論文の概要: Slimmable Video Codec
- arxiv url: http://arxiv.org/abs/2205.06754v1
- Date: Fri, 13 May 2022 16:37:27 GMT
- ステータス: 処理完了
- システム内更新日: 2022-05-16 14:05:47.093678
- Title: Slimmable Video Codec
- Title(参考訳): スリムなビデオコーデック
- Authors: Zhaocheng Liu, Luis Herranz, Fei Yang, Saiping Zhang, Shuai Wan, Marta
Mrak and Marc G\'orriz Blanch
- Abstract要約: 本稿では,スリム化可能なオートエンコーダに,スリム化可能な時間エントロピーモデルを統合することで,スリム化可能なビデオ(SlimVC)を提案する。
より複雑なアーキテクチャにもかかわらず、スリム化はレート、メモリフットプリント、計算コスト、レイテンシを制御するための強力なメカニズムのままである。
- 参考スコア(独自算出の注目度): 24.460763016660685
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Neural video compression has emerged as a novel paradigm combining trainable
multilayer neural networks and machine learning, achieving competitive
rate-distortion (RD) performances, but still remaining impractical due to heavy
neural architectures, with large memory and computational demands. In addition,
models are usually optimized for a single RD tradeoff. Recent slimmable image
codecs can dynamically adjust their model capacity to gracefully reduce the
memory and computation requirements, without harming RD performance. In this
paper we propose a slimmable video codec (SlimVC), by integrating a slimmable
temporal entropy model in a slimmable autoencoder. Despite a significantly more
complex architecture, we show that slimming remains a powerful mechanism to
control rate, memory footprint, computational cost and latency, all being
important requirements for practical video compression.
- Abstract(参考訳): ニューラルビデオ圧縮は、トレーニング可能な多層ニューラルネットワークと機械学習を組み合わせた新しいパラダイムとして登場し、競争速度歪み(RD)のパフォーマンスを実現しているが、大きなメモリと計算要求を伴う重いニューラルネットワークアーキテクチャのため、依然として実行不可能である。
さらに、モデルは通常、1つのRDトレードオフに最適化される。
最近のスリム化可能な画像コーデックは、RD性能を損なうことなく、モデル容量を動的に調整し、メモリと計算の要求を適切に低減することができる。
本稿では,スリム化可能なビデオコーデック(SlimVC)を提案し,スリム化可能な時間エントロピーモデルをスリム化可能なオートエンコーダに統合する。
より複雑なアーキテクチャにもかかわらず、スリム化はレート、メモリフットプリント、計算コスト、レイテンシを制御するための強力なメカニズムであり、いずれも実用的なビデオ圧縮の重要な要件であることを示す。
関連論文リスト
- Adaptive Caching for Faster Video Generation with Diffusion Transformers [52.73348147077075]
拡散変換器(DiT)はより大きなモデルと重い注意機構に依存しており、推論速度が遅くなる。
本稿では,Adaptive Caching(AdaCache)と呼ばれる,ビデオDiTの高速化のためのトレーニング不要手法を提案する。
また,AdaCache内で動画情報を利用するMoReg方式を導入し,動作内容に基づいて計算割り当てを制御する。
論文 参考訳(メタデータ) (2024-11-04T18:59:44Z) - Data Overfitting for On-Device Super-Resolution with Dynamic Algorithm and Compiler Co-Design [18.57172631588624]
本稿では,Content-Awareデータ処理パイプラインが支援する動的ディープニューラルネットワークを提案する。
本手法は,市販携帯電話上でのPSNRとリアルタイム性能(33FPS)の向上を実現する。
論文 参考訳(メタデータ) (2024-07-03T05:17:26Z) - A Simple Recipe for Contrastively Pre-training Video-First Encoders
Beyond 16 Frames [54.90226700939778]
我々は,大規模な画像テキストモデルを浅部時間融合によりビデオに転送する共通パラダイムを構築した。
1)標準ビデオデータセットにおけるビデオ言語アライメントの低下による空間能力の低下と,(2)処理可能なフレーム数のボトルネックとなるメモリ消費の増大である。
論文 参考訳(メタデータ) (2023-12-12T16:10:19Z) - A Codec Information Assisted Framework for Efficient Compressed Video
Super-Resolution [15.690562510147766]
リカレントニューラルネットワークアーキテクチャを用いたビデオ超解法(VSR)は、長距離時間依存性の効率的なモデリングのため、有望なソリューションである。
圧縮ビデオの繰り返しVSRモデルの高速化と高速化を目的としたコーデック情報支援フレームワーク(CIAF)を提案する。
論文 参考訳(メタデータ) (2022-10-15T08:48:29Z) - Hybrid Spatial-Temporal Entropy Modelling for Neural Video Compression [25.96187914295921]
本稿では,空間的依存と時間的依存の両方を効率的に捉える強力なエントロピーモデルを提案する。
我々のエントロピーモデルでは,最大圧縮比を用いたH266(VTM)と比較して,UVGデータセットの18.2%の節約が可能である。
論文 参考訳(メタデータ) (2022-07-13T00:03:54Z) - Self-Conditioned Probabilistic Learning of Video Rescaling [70.10092286301997]
本稿では,ビデオ再スケーリングのための自己条件付き確率的フレームワークを提案し,ペアダウンスケーリングとアップスケーリングの手順を同時に学習する。
我々は、その条件付き確率を強い時空間事前情報に基づいて最大化することにより、ダウンスケーリングで失われた情報のエントロピーを減少させる。
我々は、このフレームワークを、非微分産業損失コーデックの勾配推定器として提案する、損失のあるビデオ圧縮システムに拡張する。
論文 参考訳(メタデータ) (2021-07-24T15:57:15Z) - Slimmable Compressive Autoencoders for Practical Neural Image
Compression [20.715312224456138]
実画像圧縮のためのスリム圧縮オートエンコーダ(SlimCAEs)を提案する。
SlimCAEは、優れたレート歪み性能、可変率、メモリの動的調整、計算コスト、レイテンシを提供する柔軟性の高いモデルです。
論文 参考訳(メタデータ) (2021-03-29T16:12:04Z) - VA-RED$^2$: Video Adaptive Redundancy Reduction [64.75692128294175]
我々は,入力依存の冗長性低減フレームワークva-red$2$を提案する。
ネットワークの重み付けと協調して適応ポリシーを共有重み付け機構を用いて微分可能な方法で学習する。
私たちのフレームワークは、最先端の方法と比較して、計算(FLOP)の20% - 40%$削減を達成します。
論文 参考訳(メタデータ) (2021-02-15T22:57:52Z) - Conditional Entropy Coding for Efficient Video Compression [82.35389813794372]
本稿では,フレーム間の条件エントロピーをモデル化することのみに焦点を当てた,非常にシンプルで効率的なビデオ圧縮フレームワークを提案する。
まず、画像遅延符号間のエントロピーをモデル化する単純なアーキテクチャが、他のニューラルビデオ圧縮やビデオコーデックと同等の競争力を持つことを示す。
次に、このアーキテクチャの上に新しい内部学習拡張を提案し、復号速度を抑えることなく10%の節約を実現した。
論文 参考訳(メタデータ) (2020-08-20T20:01:59Z) - Learning for Video Compression with Recurrent Auto-Encoder and Recurrent
Probability Model [164.7489982837475]
本稿では、リカレントオートエンコーダ(RAE)とリカレント確率モデル(RPM)を用いたリカレントラーニングビデオ圧縮(RLVC)手法を提案する。
RAEは、ビデオフレーム間の時間的相関を利用するために、エンコーダとデコーダの両方で繰り返しセルを使用する。
提案手法は,PSNRとMS-SSIMの両方の観点から,最先端の学習ビデオ圧縮性能を実現する。
論文 参考訳(メタデータ) (2020-06-24T08:46:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。