Dense residual Transformer for image denoising
- URL: http://arxiv.org/abs/2205.06944v1
- Date: Sat, 14 May 2022 01:59:38 GMT
- Title: Dense residual Transformer for image denoising
- Authors: Chao Yao, Shuo Jin, Meiqin Liu, Xiaojuan Ban
- Abstract summary: Image denoising is an important low-level computer vision task, which aims to reconstruct a noise-free and high-quality image from a noisy image.
We propose an image denoising network structure based on Transformer, which is named DenSformer.
- Score: 7.232516946005627
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Image denoising is an important low-level computer vision task, which aims to
reconstruct a noise-free and high-quality image from a noisy image. With the
development of deep learning, convolutional neural network (CNN) has been
gradually applied and achieved great success in image denoising, image
compression, image enhancement, etc. Recently, Transformer has been a hot
technique, which is widely used to tackle computer vision tasks. However, few
Transformer-based methods have been proposed for low-level vision tasks. In
this paper, we proposed an image denoising network structure based on
Transformer, which is named DenSformer. DenSformer consists of three modules,
including a preprocessing module, a local-global feature extraction module, and
a reconstruction module. Specifically, the local-global feature extraction
module consists of several Sformer groups, each of which has several
ETransformer layers and a convolution layer, together with a residual
connection. These Sformer groups are densely skip-connected to fuse the feature
of different layers, and they jointly capture the local and global information
from the given noisy images. We conduct our model on comprehensive experiments.
Experimental results prove that our DenSformer achieves improvement compared to
some state-of-the-art methods, both for the synthetic noise data and real noise
data, in the objective and subjective evaluations.
Related papers
- Multi-Scale Representation Learning for Image Restoration with State-Space Model [13.622411683295686]
We propose a novel Multi-Scale State-Space Model-based (MS-Mamba) for efficient image restoration.
Our proposed method achieves new state-of-the-art performance while maintaining low computational complexity.
arXiv Detail & Related papers (2024-08-19T16:42:58Z) - Multi-Scale Texture Loss for CT denoising with GANs [0.9349653765341301]
Generative Adversarial Networks (GANs) have proved as a powerful framework for denoising applications in medical imaging.
This work presents a loss function that leverages the intrinsic multi-scale nature of the Gray-Level-Co-occurrence Matrix (GLCM)
Our approach also introduces a self-attention layer that dynamically aggregates the multi-scale texture information extracted from the images.
arXiv Detail & Related papers (2024-03-25T11:28:52Z) - A cross Transformer for image denoising [83.68175077524111]
We propose a cross Transformer denoising CNN (CTNet) with a serial block (SB), a parallel block (PB), and a residual block (RB)
CTNet is superior to some popular denoising methods in terms of real and synthetic image denoising.
arXiv Detail & Related papers (2023-10-16T13:53:19Z) - Multi-stage image denoising with the wavelet transform [125.2251438120701]
Deep convolutional neural networks (CNNs) are used for image denoising via automatically mining accurate structure information.
We propose a multi-stage image denoising CNN with the wavelet transform (MWDCNN) via three stages, i.e., a dynamic convolutional block (DCB), two cascaded wavelet transform and enhancement blocks (WEBs) and residual block (RB)
arXiv Detail & Related papers (2022-09-26T03:28:23Z) - Rank-Enhanced Low-Dimensional Convolution Set for Hyperspectral Image
Denoising [50.039949798156826]
This paper tackles the challenging problem of hyperspectral (HS) image denoising.
We propose rank-enhanced low-dimensional convolution set (Re-ConvSet)
We then incorporate Re-ConvSet into the widely-used U-Net architecture to construct an HS image denoising method.
arXiv Detail & Related papers (2022-07-09T13:35:12Z) - SUMD: Super U-shaped Matrix Decomposition Convolutional neural network
for Image denoising [0.0]
We introduce the matrix decomposition module(MD) in the network to establish the global context feature.
Inspired by the design of multi-stage progressive restoration of U-shaped architecture, we further integrate the MD module into the multi-branches.
Our model(SUMD) can produce comparable visual quality and accuracy results with Transformer-based methods.
arXiv Detail & Related papers (2022-04-11T04:38:34Z) - Practical Blind Image Denoising via Swin-Conv-UNet and Data Synthesis [148.16279746287452]
We propose a swin-conv block to incorporate the local modeling ability of residual convolutional layer and non-local modeling ability of swin transformer block.
For the training data synthesis, we design a practical noise degradation model which takes into consideration different kinds of noise.
Experiments on AGWN removal and real image denoising demonstrate that the new network architecture design achieves state-of-the-art performance.
arXiv Detail & Related papers (2022-03-24T18:11:31Z) - CM-GAN: Image Inpainting with Cascaded Modulation GAN and Object-Aware
Training [112.96224800952724]
We propose cascaded modulation GAN (CM-GAN) to generate plausible image structures when dealing with large holes in complex images.
In each decoder block, global modulation is first applied to perform coarse semantic-aware synthesis structure, then spatial modulation is applied on the output of global modulation to further adjust the feature map in a spatially adaptive fashion.
In addition, we design an object-aware training scheme to prevent the network from hallucinating new objects inside holes, fulfilling the needs of object removal tasks in real-world scenarios.
arXiv Detail & Related papers (2022-03-22T16:13:27Z) - SDWNet: A Straight Dilated Network with Wavelet Transformation for Image
Deblurring [23.86692375792203]
Image deblurring is a computer vision problem that aims to recover a sharp image from a blurred image.
Our model uses dilated convolution to enable the obtainment of the large receptive field with high spatial resolution.
We propose a novel module using the wavelet transform, which effectively helps the network to recover clear high-frequency texture details.
arXiv Detail & Related papers (2021-10-12T07:58:10Z) - Reconstructing the Noise Manifold for Image Denoising [56.562855317536396]
We introduce the idea of a cGAN which explicitly leverages structure in the image noise space.
By learning directly a low dimensional manifold of the image noise, the generator promotes the removal from the noisy image only that information which spans this manifold.
Based on our experiments, our model substantially outperforms existing state-of-the-art architectures.
arXiv Detail & Related papers (2020-02-11T00:31:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.