論文の概要: FedHAP: Fast Federated Learning for LEO Constellations using
Collaborative HAPs
- arxiv url: http://arxiv.org/abs/2205.07216v1
- Date: Sun, 15 May 2022 08:22:52 GMT
- ステータス: 処理完了
- システム内更新日: 2022-05-17 15:06:42.118901
- Title: FedHAP: Fast Federated Learning for LEO Constellations using
Collaborative HAPs
- Title(参考訳): fedhap:協調hapsを用いたleo星座の高速フェデレート学習
- Authors: Mohamed Elmahallawy, Tony Luo
- Abstract要約: ローアース・オービット(LEO)衛星星座は近年、急速に展開している。
このような応用に機械学習(ML)を適用するには、画像などの衛星データを地上局(GS)にダウンロードする従来の方法は望ましいものではない。
既存のFLソリューションは、過剰収束遅延や信頼できない無線チャネルといった大きな課題のために、そのようなLEOコンステレーションのシナリオには適さないことを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Low Earth Obit (LEO) satellite constellations have seen a sharp increase of
deployment in recent years, due to their distinctive capabilities of providing
broadband Internet access and enabling global data acquisition as well as
large-scale AI applications. To apply machine learning (ML) in such
applications, the traditional way of downloading satellite data such as imagery
to a ground station (GS) and then training a model in a centralized manner, is
not desirable because of the limited bandwidth, intermittent connectivity
between satellites and the GS, and privacy concerns on transmitting raw data.
Federated Learning (FL) as an emerging communication and computing paradigm
provides a potentially supreme solution to this problem. However, we show that
existing FL solutions do not fit well in such LEO constellation scenarios
because of significant challenges such as excessive convergence delay and
unreliable wireless channels. To this end, we propose to introduce
high-altitude platforms (HAPs) as distributed parameter servers (PSs) and
propose a synchronous FL algorithm, FedHAP, to accomplish model training in an
efficient manner via inter-satellite collaboration. To accelerate convergence,
we also propose a layered communication scheme between satellites and HAPs that
FedHAP leverages. Our simulations demonstrate that FedHAP attains model
convergence in much fewer communication rounds than benchmarks, cutting the
training time substantially from several days down to a few hours with the same
level of resulting accuracy.
- Abstract(参考訳): 低地球軌道(LEO)衛星コンステレーションは、ブロードバンドインターネットアクセスを提供し、グローバルなデータ取得と大規模AIアプリケーションを可能にするという特徴があるため、近年急速に展開されている。
このようなアプリケーションに機械学習(ML)を適用するために、画像などの衛星データを地上局(GS)にダウンロードし、集中的にモデルを訓練する従来の方法は、帯域幅の制限、衛星とGS間の断続接続、生データの送信に関するプライバシー上の懸念のため望ましくない。
新たなコミュニケーションおよびコンピューティングパラダイムとしてのフェデレートラーニング(FL)は、この問題に対する潜在的に最高の解決策を提供する。
しかし,既存のflソリューションは,過度の収束遅延や信頼できない無線チャネルなど,大きな課題があるため,そのような leo コンステレーションシナリオには適さないことを示す。
そこで本研究では,分散パラメータサーバ (PS) として高高度プラットフォーム (HAP) を導入し,衛星間協調によるモデルトレーニングを効率的に行うための同期FLアルゴリズムであるFedHAPを提案する。
また,収束を加速するために,fedhapが活用する衛星とhap間の層間通信方式を提案する。
シミュレーションの結果,fedhapは,ベンチマークよりもはるかに少ない通信ラウンドでモデル収束を達成し,トレーニング時間をほぼ数日から数時間に短縮し,精度を同等に向上した。
関連論文リスト
- SatFed: A Resource-Efficient LEO Satellite-Assisted Heterogeneous Federated Learning Framework [19.59862482196897]
資源効率の高い衛星支援ヘテロジニアスFLフレームワークであるSatFedを提案する。
SatFedは、高度に制約された衛星地上帯域の利用を最適化するために、鮮度に基づくモデルの優先順位付けキューを実装している。
実世界のLEO衛星ネットワークを用いた実験により、SatFedは最先端のベンチマークよりも優れた性能と堅牢性を発揮することが示された。
論文 参考訳(メタデータ) (2024-09-20T13:44:00Z) - A Distance Similarity-based Genetic Optimization Algorithm for Satellite Ground Network Planning Considering Feeding Mode [53.71516191515285]
衛星データ中継ミッションの送信効率の低さは、現在システムの構築を制約している問題となっている。
本研究では,タスク間の状態特性を考慮した距離類似性に基づく遺伝的最適化アルゴリズム(DSGA)を提案し,タスク間の類似性を決定するための重み付きユークリッド距離法を提案する。
論文 参考訳(メタデータ) (2024-08-29T06:57:45Z) - Hyperdimensional Computing Empowered Federated Foundation Model over Wireless Networks for Metaverse [56.384390765357004]
本稿では,新しい基礎モデルのための統合型分割学習と超次元計算フレームワークを提案する。
この新しいアプローチは通信コスト、計算負荷、プライバシーリスクを低減し、Metaverseのリソース制約されたエッジデバイスに適している。
論文 参考訳(メタデータ) (2024-08-26T17:03:14Z) - Collaborative Ground-Space Communications via Evolutionary Multi-objective Deep Reinforcement Learning [113.48727062141764]
地中直接通信を実現するために,分散コラボレーティブビームフォーミング(DCB)に基づくアップリンク通信パラダイムを提案する。
DCBは、低軌道(LEO)衛星と効率的な直接接続を確立することができない端末を分散アンテナとして扱う。
本稿では,進化的多目的深層強化学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-04-11T03:13:02Z) - Satellite Federated Edge Learning: Architecture Design and Convergence Analysis [47.057886812985984]
本稿では,FEDMEGAという新しいFEELアルゴリズムを提案する。
軌道内モデルアグリゲーションのための衛星間リンク(ISL)を統合することにより、提案アルゴリズムは低データレートと断続的なGSLの使用を著しく削減する。
提案手法は,環全リデューサに基づく軌道内アグリゲーション機構と,グローバルモデルアグリゲーションのためのネットワークフローベースのトランスミッションスキームを組み合わせたものである。
論文 参考訳(メタデータ) (2024-04-02T11:59:58Z) - Communication-Efficient Federated Learning for LEO Satellite Networks
Integrated with HAPs Using Hybrid NOMA-OFDM [1.3121410433987561]
本稿では,LEO衛星に適した新しいFL-SatComアプローチであるNomaFedHAPを提案する。
NomaFedHAPは高高度プラットフォーム(HAP)を分散パラメータサーバ(PS)として利用し、衛星の可視性を高める。
近距離シェルにおける衛星の停止確率とシステム全体の停止確率のクローズドな表現を導出する。
論文 参考訳(メタデータ) (2024-01-01T07:07:27Z) - FedSN: A Federated Learning Framework over Heterogeneous LEO Satellite Networks [18.213174641216884]
多数の低軌道軌道(LEO)衛星が打ち上げられ、SpaceXなどの商業企業によって宇宙に投入された。
LEO衛星が搭載するマルチモーダルセンサにより、通信だけでなく、空間変調認識やリモートセンシング画像分類など、さまざまな機械学習アプリケーションにも機能する。
本稿では,これらの課題に対処するための一般FLフレームワークとしてFedSNを提案し,LEO衛星上でのデータ多様性について検討する。
論文 参考訳(メタデータ) (2023-11-02T14:47:06Z) - Optimizing Federated Learning in LEO Satellite Constellations via
Intra-Plane Model Propagation and Sink Satellite Scheduling [3.096615629099617]
衛星エッジコンピューティング(SEC)は、各衛星がMLモデルをオンボードで訓練し、モデルのみを地上局にアップロードすることを可能にする。
本稿では、既存のFLベースのソリューションの制限(緩やかな収束)を克服する新しいFLフレームワークであるFedLEOを提案する。
以上の結果から,FedLEO は FL の収束を著しく促進するが,実際にモデル精度を大幅に向上させる。
論文 参考訳(メタデータ) (2023-02-27T00:32:01Z) - Learning Emergent Random Access Protocol for LEO Satellite Networks [51.575090080749554]
創発的ランダムアクセスチャネルプロトコル(eRACH)と呼ばれるLEO SATネットワークのための新しい許可なしランダムアクセスソリューションを提案する。
eRACHは、非定常ネットワーク環境との相互作用によって生じるモデルフリーなアプローチである。
RACHと比較して,提案するeRACHは平均ネットワークスループットが54.6%向上することを示す。
論文 参考訳(メタデータ) (2021-12-03T07:44:45Z) - Integrating LEO Satellite and UAV Relaying via Reinforcement Learning
for Non-Terrestrial Networks [51.05735925326235]
低軌道軌道(LEO)衛星のメガコンステレーションは、低レイテンシで長距離通信を可能にする可能性がある。
軌道上の星座から選択されたLEO衛星を用いて、2つの遠距離地上端末間でパケットを転送する問題について検討する。
エンドツーエンドのデータレートを最大化するためには、衛星アソシエーションとHAPロケーションを最適化する必要がある。
本稿では, 深部強化学習(DRL)と新しい動作次元低減技術を用いてこの問題に対処する。
論文 参考訳(メタデータ) (2020-05-26T05:39:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。