論文の概要: Fast and realistic large-scale structure from machine-learning-augmented
random field simulations
- arxiv url: http://arxiv.org/abs/2205.07898v1
- Date: Mon, 16 May 2022 18:00:01 GMT
- ステータス: 処理完了
- システム内更新日: 2022-05-18 14:56:39.027219
- Title: Fast and realistic large-scale structure from machine-learning-augmented
random field simulations
- Title(参考訳): 機械学習強化ランダム場シミュレーションによる高速かつ現実的な大規模構造
- Authors: Davide Piras, Benjamin Joachimi, Francisco Villaescusa-Navarro
- Abstract要約: 我々は、予測された対数正規ダークマター密度場をより現実的なダークマターマップに変換するために機械学習モデルを訓練する。
本研究では,フィールド分解能,赤方偏移,宇宙論的パラメータの異なる様々な統計的テストと比較したモデルの性能を示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Producing thousands of simulations of the dark matter distribution in the
Universe with increasing precision is a challenging but critical task to
facilitate the exploitation of current and forthcoming cosmological surveys.
Many inexpensive substitutes to full $N$-body simulations have been proposed,
even though they often fail to reproduce the statistics of the smaller,
non-linear scales. Among these alternatives, a common approximation is
represented by the lognormal distribution, which comes with its own limitations
as well, while being extremely fast to compute even for high-resolution density
fields. In this work, we train a machine learning model to transform projected
lognormal dark matter density fields to more realistic dark matter maps, as
obtained from full $N$-body simulations. We detail the procedure that we follow
to generate highly correlated pairs of lognormal and simulated maps, which we
use as our training data, exploiting the information of the Fourier phases. We
demonstrate the performance of our model comparing various statistical tests
with different field resolutions, redshifts and cosmological parameters,
proving its robustness and explaining its current limitations. The augmented
lognormal random fields reproduce the power spectrum up to wavenumbers of $1 \
h \ \rm{Mpc}^{-1}$, the bispectrum and the peak counts within 10%, and always
within the error bars, of the fiducial target simulations. Finally, we describe
how we plan to integrate our proposed model with existing tools to yield more
accurate spherical random fields for weak lensing analysis, going beyond the
lognormal approximation.
- Abstract(参考訳): 宇宙における暗黒物質分布の高精度化による数千のシミュレーションを作成することは、現在および今後の宇宙科学調査の活用を促進する上で難しいが重要な課題である。
多くの安価なn$-bodyシミュレーションの代替案が提案されているが、小規模で非線形なスケールの統計を再現できないことが多い。
これらの代替案の中で、共通近似は対数正規分布で表され、これはそれ自身の制限も伴うが、高分解能密度場に対しても計算が極めて高速である。
本研究では,予測された対数正規暗黒物質密度場を,n$-bodyシミュレーションで得られたより現実的な暗黒物質マップに変換するために,機械学習モデルを訓練する。
我々は,Fourier相の情報を活用して,学習データとして使用する対数正規写像とシミュレートマップの高度に相関したペアを生成する手順について詳述する。
本研究では,様々なフィールド解像度,赤方偏移,宇宙パラメータを用いた各種統計テストを比較し,その頑健性を証明し,現在の限界を説明する。
拡張対数正規確率場は、最大波数1 \h \ \\rm{mpc}^{-1}$までのパワースペクトルを再現し、双スペクトルとピーク数は10%以内であり、常に誤差バー内である。
最後に,提案手法を既存ツールと統合し,弱レンズ解析のためのより高精度な球面確率場を得る計画について述べる。
関連論文リスト
- Cosmological Analysis with Calibrated Neural Quantile Estimation and Approximate Simulators [0.0]
我々は,多数の近似シミュレーションをトレーニングに利用し,少数の高忠実度シミュレーションをキャリブレーションに利用した新しいシミュレーションベース推論(SBI)手法を提案する。
概念の証明として、2次元暗黒物質密度写像から、z=0$で$k_rm maxsim1.5,h$/Mpcまでの距離で宇宙的パラメータを推定できることが示される。
キャリブレーション後部は、$sim104$ expensive Particle-Particle (PP) シミュレーションの直接トレーニングにより得られたものとよく一致するが、計算コストのごく一部で一致する。
論文 参考訳(メタデータ) (2024-11-22T05:53:46Z) - CHARM: Creating Halos with Auto-Regressive Multi-stage networks [1.6987257996124416]
CHARMは、モックハローカタログを作成するための新しい方法である。
モックハローカタログと塗装された銀河カタログは、実空間と赤方偏移空間の両方でN$ボディシミュレーションから得られたのと同じ統計特性を持つことを示す。
論文 参考訳(メタデータ) (2024-09-13T18:00:06Z) - Probabilistic Unrolling: Scalable, Inverse-Free Maximum Likelihood
Estimation for Latent Gaussian Models [69.22568644711113]
我々は,モンテカルロサンプリングと反復線形解法を組み合わせた確率的アンローリングを導入し,行列逆転を回避した。
理論的解析により,解法の繰り返しによる解法の解法と逆転が最大値推定の勾配推定を高速化することを示した。
シミュレーションおよび実データ実験において、確率的アンロールは、モデル性能の損失を最小限に抑えながら、勾配EMよりも桁違いに高速な潜在ガウスモデルを学習することを示した。
論文 参考訳(メタデータ) (2023-06-05T21:08:34Z) - Fast emulation of cosmological density fields based on dimensionality
reduction and supervised machine-learning [0.0]
簡単な機械学習手法を用いて,高速暗黒物質密度場エミュレーションを競合精度で実行可能であることを示す。
異なる宇宙パラメータに対する新しい密度立方体は、新しいN体シミュレーションに直接頼らずに推定できる。
論文 参考訳(メタデータ) (2023-04-12T18:29:26Z) - Score-based Diffusion Models in Function Space [140.792362459734]
拡散モデルは、最近、生成モデリングの強力なフレームワークとして登場した。
本稿では,関数空間における拡散モデルをトレーニングするためのDDO(Denoising Diffusion Operators)という,数学的に厳密なフレームワークを提案する。
データ解像度に依存しない固定コストで、対応する離散化アルゴリズムが正確なサンプルを生成することを示す。
論文 参考訳(メタデータ) (2023-02-14T23:50:53Z) - Importance sampling for stochastic quantum simulations [68.8204255655161]
我々は、係数に応じてハミルトン式からサンプリングしてランダムな積公式を構築するqDriftプロトコルを導入する。
サンプリング段階における個別のシミュレーションコストを考慮し、同じ精度でシミュレーションコストを削減可能であることを示す。
格子核効果場理論を用いて数値シミュレーションを行った結果, 実験結果が得られた。
論文 参考訳(メタデータ) (2022-12-12T15:06:32Z) - Fast emulation of density functional theory simulations using
approximate Gaussian processes [0.6445605125467573]
シミュレーション出力を予測する第2の統計モデルは、モデルフィッティング中の完全なシミュレーションの代わりに使用できる。
我々は,観測データを用いた密度汎関数理論(DFT)モデルパラメータのキャリブレーションにエミュレータを用いた。
これらのDFTモデルの有用性は、観測されたデータに基づいて、実験的に観測されていない核種の性質に関する予測を行うことである。
論文 参考訳(メタデータ) (2022-08-24T05:09:36Z) - Multi-fidelity Hierarchical Neural Processes [79.0284780825048]
多要素代理モデリングは、異なるシミュレーション出力を融合させることで計算コストを削減する。
本稿では,多階層型階層型ニューラルネットワーク(MF-HNP)を提案する。
疫学および気候モデリングタスクにおけるMF-HNPの評価を行い、精度と不確実性評価の観点から競合性能を達成した。
論文 参考訳(メタデータ) (2022-06-10T04:54:13Z) - Super-resolution GANs of randomly-seeded fields [68.8204255655161]
ランダムスパースセンサからフィールド量の推定を行うための,GAN(Super- resolution Generative Adversarial Network)フレームワークを提案する。
このアルゴリズムはランダムサンプリングを利用して、高解像度の基底分布の不完全ビューを提供する。
提案手法は, 流体流動シミュレーション, 海洋表面温度分布測定, 粒子画像速度測定データの合成データベースを用いて検証した。
論文 参考訳(メタデータ) (2022-02-23T18:57:53Z) - Multi-Output Random Forest Regression to Emulate the Earliest Stages of
Planet Formation [0.1657441317977376]
我々は、より高速に近似するシステムを設計するために、機械学習のアプローチを取ります。
ブリュート力シミュレーションデータに基づく多出力ランダムフォレスト回帰モデルを開発した。
その結果,ランダムフォレストモデルがブルト力シミュレーション結果に対して高精度な予測を生成できることが示唆された。
論文 参考訳(メタデータ) (2021-04-26T19:51:40Z) - Fast approximations in the homogeneous Ising model for use in scene
analysis [61.0951285821105]
我々は、推論に必要な量を数値計算できる正確な近似を提供する。
近似式はスケーラブルでマルコフランダム場の大きさに満足できないことを示す。
機能的磁気共鳴イメージングアクティベーション検出実験においてベイズ推論を行い, ピスタチオ樹収量の年次増加の空間パターンにおける異方性に対する確率比試験を行った。
論文 参考訳(メタデータ) (2017-12-06T14:24:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。