論文の概要: Learning the Universe: Learning to Optimize Cosmic Initial Conditions with Non-Differentiable Structure Formation Models
- arxiv url: http://arxiv.org/abs/2502.13243v1
- Date: Tue, 18 Feb 2025 19:17:01 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-20 13:58:41.896365
- Title: Learning the Universe: Learning to Optimize Cosmic Initial Conditions with Non-Differentiable Structure Formation Models
- Title(参考訳): 宇宙の学習:微分不可能な構造形成モデルによる宇宙初期条件の最適化
- Authors: Ludvig Doeser, Metin Ata, Jens Jasche,
- Abstract要約: 本稿では,3次元宇宙初期条件を再構築するためのLearning the Universe by Learning to Optimize (LULO)を紹介する。
LULOは、3次元宇宙の初期条件を再構築するための勾配のないフレームワークである。
ダークマターのみの$N$ボディシミュレーションで同定した$M_200mathrmc$halosから初期条件を正確に再構成することで,本手法を実証する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Making the most of next-generation galaxy clustering surveys requires overcoming challenges in complex, non-linear modelling to access the significant amount of information at smaller cosmological scales. Field-level inference has provided a unique opportunity beyond summary statistics to use all of the information of the galaxy distribution. However, addressing current challenges often necessitates numerical modelling that incorporates non-differentiable components, hindering the use of efficient gradient-based inference methods. In this paper, we introduce Learning the Universe by Learning to Optimize (LULO), a gradient-free framework for reconstructing the 3D cosmic initial conditions. Our approach advances deep learning to train an optimization algorithm capable of fitting state-of-the-art non-differentiable simulators to data at the field level. Importantly, the neural optimizer solely acts as a search engine in an iterative scheme, always maintaining full physics simulations in the loop, ensuring scalability and reliability. We demonstrate the method by accurately reconstructing initial conditions from $M_{200\mathrm{c}}$ halos identified in a dark matter-only $N$-body simulation with a spherical overdensity algorithm. The derived dark matter and halo overdensity fields exhibit $\geq80\%$ cross-correlation with the ground truth into the non-linear regime $k \sim 1h$ Mpc$^{-1}$. Additional cosmological tests reveal accurate recovery of the power spectra, bispectra, halo mass function, and velocities. With this work, we demonstrate a promising path forward to non-linear field-level inference surpassing the requirement of a differentiable physics model.
- Abstract(参考訳): 次世代銀河団の調査を最大限に活用するには、より小さな宇宙スケールで大量の情報にアクセスするために、複雑な非線形モデリングの課題を克服する必要がある。
フィールドレベルの推論は、銀河分布の全ての情報を使用するための要約統計以上のユニークな機会を与えてきた。
しかし、現在の課題に対処するには、しばしば非微分不可能なコンポーネントを組み込んだ数値モデリングが必要であり、効率的な勾配ベースの推論手法の使用を妨げる。
本稿では,3次元宇宙初期条件を再構築するための勾配のないフレームワークであるLearning the Universe by Learning to Optimize (LULO)を紹介する。
提案手法は,最先端の非微分可能シミュレータをフィールドレベルでのデータに適合させることができる最適化アルゴリズムを訓練するために,深層学習を推進している。
重要なのは、ニューラルオプティマイザは反復的なスキームで検索エンジンとしてのみ機能し、常にループ内の完全な物理シミュレーションを維持し、スケーラビリティと信頼性を確保することである。
ダークマターのみの$N$ボディシミュレーションにおいて,球面重み付きアルゴリズムを用いて初期条件を$M_{200\mathrm{c}}$ halosから正確に再構成することで,本手法を実証する。
導出されたダークマターとハロー超密度場は、基底真理との相互相関を$k \sim 1h$ Mpc$^{-1}$とする。
追加の宇宙実験により、パワースペクトル、双スペクトル、ハロー質量関数、速度の正確な回復が確認された。
この研究により、微分可能物理モデルの要求を超越した非線形場レベルの推論への有望な道を示す。
関連論文リスト
- CHARM: Creating Halos with Auto-Regressive Multi-stage networks [1.6987257996124416]
CHARMは、モックハローカタログを作成するための新しい方法である。
モックハローカタログと塗装された銀河カタログは、実空間と赤方偏移空間の両方でN$ボディシミュレーションから得られたのと同じ統計特性を持つことを示す。
論文 参考訳(メタデータ) (2024-09-13T18:00:06Z) - Spherinator and HiPSter: Representation Learning for Unbiased Knowledge Discovery from Simulations [0.0]
我々は、幅広いシミュレーションから有用な科学的洞察を得るための、新しい、偏見のない、機械学習に基づくアプローチについて説明する。
我々の概念は、低次元空間におけるデータのコンパクトな表現を学習するために非線形次元削減を適用することに基づいている。
本稿では、回転不変な超球面変動畳み込み自己エンコーダを用いて、潜時空間の電力分布を利用して、IllustrisTNGシミュレーションから銀河を訓練したプロトタイプを提案する。
論文 参考訳(メタデータ) (2024-06-06T07:34:58Z) - Towards Complex Dynamic Physics System Simulation with Graph Neural ODEs [75.7104463046767]
本稿では,粒子系の空間的および時間的依存性を特徴付ける新しい学習ベースシミュレーションモデルを提案する。
我々は,GNSTODEのシミュレーション性能を,重力とクーロンの2つの実世界の粒子系上で実証的に評価した。
論文 参考訳(メタデータ) (2023-05-21T03:51:03Z) - Learning Controllable Adaptive Simulation for Multi-resolution Physics [86.8993558124143]
完全深層学習に基づくサロゲートモデルとして,LAMP(Learning Controllable Adaptive Simulation for Multi- resolution Physics)を導入した。
LAMPは、前方進化を学習するためのグラフニューラルネットワーク(GNN)と、空間的洗練と粗大化のポリシーを学ぶためのGNNベースのアクター批判で構成されている。
我々は,LAMPが最先端のディープラーニングサロゲートモデルより優れており,長期予測誤差を改善するために,適応的なトレードオフ計算が可能であることを実証した。
論文 参考訳(メタデータ) (2023-05-01T23:20:27Z) - Predicting the Initial Conditions of the Universe using a Deterministic
Neural Network [10.158552381785078]
宇宙の現在の状態に繋がる初期条件を見つけることは、初期条件の難解な入力空間を探索することを伴うため、難しい。
深層学習は,N体シミュレーションの線形入力とシミュレーションからの最終的な非線形出力のマッピングを直接学習することにより,N体シミュレーションの代用として登場した。
本研究では, 逆写像の学習に決定論的畳み込みニューラルネットワークを応用し, 広い範囲にわたる線形変位場を正確に復元することを示す。
論文 参考訳(メタデータ) (2023-03-23T06:04:36Z) - Fast and realistic large-scale structure from machine-learning-augmented
random field simulations [0.0]
我々は、予測された対数正規ダークマター密度場をより現実的なダークマターマップに変換するために機械学習モデルを訓練する。
本研究では,フィールド分解能,赤方偏移,宇宙論的パラメータの異なる様々な統計的テストと比較したモデルの性能を示す。
論文 参考訳(メタデータ) (2022-05-16T18:00:01Z) - Fast and Accurate Non-Linear Predictions of Universes with Deep Learning [21.218297581239664]
我々は、高速線形予測を数値シミュレーションから完全に非線形な予測に変換するV-Netベースのモデルを構築した。
我々のNNモデルはシミュレーションを小さなスケールにエミュレートすることを学び、現在の最先端の近似手法よりも高速かつ高精度である。
論文 参考訳(メタデータ) (2020-12-01T03:30:37Z) - Deep Magnification-Flexible Upsampling over 3D Point Clouds [103.09504572409449]
本稿では,高密度点雲を生成するためのエンドツーエンド学習ベースのフレームワークを提案する。
まずこの問題を明示的に定式化し、重みと高次近似誤差を判定する。
そこで我々は,高次改良とともに,統一重みとソート重みを適応的に学習する軽量ニューラルネットワークを設計する。
論文 参考訳(メタデータ) (2020-11-25T14:00:18Z) - Data-Efficient Learning for Complex and Real-Time Physical Problem
Solving using Augmented Simulation [49.631034790080406]
本稿では,大理石を円形迷路の中心まで航行する作業について述べる。
実システムと対話する数分以内に,複雑な環境で大理石を動かすことを学習するモデルを提案する。
論文 参考訳(メタデータ) (2020-11-14T02:03:08Z) - Fast Gravitational Approach for Rigid Point Set Registration with
Ordinary Differential Equations [79.71184760864507]
本稿では,FGA(Fast Gravitational Approach)と呼ばれる厳密な点集合アライメントのための物理に基づく新しい手法を紹介する。
FGAでは、ソースとターゲットの点集合は、シミュレーションされた重力場内を移動しながら、世界規模で多重リンクされた方法で相互作用する質量を持つ剛体粒子群として解釈される。
従来のアライメント手法では,新しいメソッドクラスには特徴がないことを示す。
論文 参考訳(メタデータ) (2020-09-28T15:05:39Z) - Dense Non-Rigid Structure from Motion: A Manifold Viewpoint [162.88686222340962]
Non-Rigid Structure-from-Motion (NRSfM) 問題は、複数のフレームにまたがる2次元特徴対応から変形物体の3次元形状を復元することを目的としている。
提案手法は,ノイズに対する精度,スケーラビリティ,堅牢性を大幅に向上させる。
論文 参考訳(メタデータ) (2020-06-15T09:15:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。