Efficient Stereo Depth Estimation for Pseudo LiDAR: A Self-Supervised
Approach Based on Multi-Input ResNet Encoder
- URL: http://arxiv.org/abs/2205.08089v1
- Date: Tue, 17 May 2022 04:42:13 GMT
- Title: Efficient Stereo Depth Estimation for Pseudo LiDAR: A Self-Supervised
Approach Based on Multi-Input ResNet Encoder
- Authors: Sabir Hossain, Xianke Lin
- Abstract summary: This paper presents a strategy to obtain the real-time pseudo point cloud instead of the laser sensor from the image sensor.
We propose an approach to use different depth estimators to obtain pseudo point clouds like LiDAR to obtain better performance.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Perception and localization are essential for autonomous delivery vehicles,
mostly estimated from 3D LiDAR sensors due to their precise distance
measurement capability. This paper presents a strategy to obtain the real-time
pseudo point cloud instead of the laser sensor from the image sensor. We
propose an approach to use different depth estimators to obtain pseudo point
clouds like LiDAR to obtain better performance. Moreover, the training and
validating strategy of the depth estimator has adopted stereo imagery data to
estimate more accurate depth estimation as well as point cloud results. Our
approach to generating depth maps outperforms on KITTI benchmark while yielding
point clouds significantly faster than other approaches.
Related papers
- Robust Depth Enhancement via Polarization Prompt Fusion Tuning [112.88371907047396]
We present a framework that leverages polarization imaging to improve inaccurate depth measurements from various depth sensors.
Our method first adopts a learning-based strategy where a neural network is trained to estimate a dense and complete depth map from polarization data and a sensor depth map from different sensors.
To further improve the performance, we propose a Polarization Prompt Fusion Tuning (PPFT) strategy to effectively utilize RGB-based models pre-trained on large-scale datasets.
arXiv Detail & Related papers (2024-04-05T17:55:33Z) - OccNeRF: Advancing 3D Occupancy Prediction in LiDAR-Free Environments [77.0399450848749]
We propose an OccNeRF method for training occupancy networks without 3D supervision.
We parameterize the reconstructed occupancy fields and reorganize the sampling strategy to align with the cameras' infinite perceptive range.
For semantic occupancy prediction, we design several strategies to polish the prompts and filter the outputs of a pretrained open-vocabulary 2D segmentation model.
arXiv Detail & Related papers (2023-12-14T18:58:52Z) - Deep Neighbor Layer Aggregation for Lightweight Self-Supervised
Monocular Depth Estimation [1.6775954077761863]
We present a fully convolutional depth estimation network using contextual feature fusion.
Compared to UNet++ and HRNet, we use high-resolution and low-resolution features to reserve information on small targets and fast-moving objects.
Our method reduces the parameters without sacrificing accuracy.
arXiv Detail & Related papers (2023-09-17T13:40:15Z) - Boosting 3D Object Detection by Simulating Multimodality on Point Clouds [51.87740119160152]
This paper presents a new approach to boost a single-modality (LiDAR) 3D object detector by teaching it to simulate features and responses that follow a multi-modality (LiDAR-image) detector.
The approach needs LiDAR-image data only when training the single-modality detector, and once well-trained, it only needs LiDAR data at inference.
Experimental results on the nuScenes dataset show that our approach outperforms all SOTA LiDAR-only 3D detectors.
arXiv Detail & Related papers (2022-06-30T01:44:30Z) - Depth Estimation Matters Most: Improving Per-Object Depth Estimation for
Monocular 3D Detection and Tracking [47.59619420444781]
Approaches to monocular 3D perception including detection and tracking often yield inferior performance when compared to LiDAR-based techniques.
We propose a multi-level fusion method that combines different representations (RGB and pseudo-LiDAR) and temporal information across multiple frames for objects (tracklets) to enhance per-object depth estimation.
arXiv Detail & Related papers (2022-06-08T03:37:59Z) - RealNet: Combining Optimized Object Detection with Information Fusion
Depth Estimation Co-Design Method on IoT [2.9275056713717285]
We propose a co-design method combining the model-streamlined recognition algorithm, the depth estimation algorithm, and information fusion.
The method proposed in this paper is suitable for mobile platforms with high real-time request.
arXiv Detail & Related papers (2022-04-24T08:35:55Z) - Advancing Self-supervised Monocular Depth Learning with Sparse LiDAR [22.202192422883122]
We propose a novel two-stage network to advance the self-supervised monocular dense depth learning.
Our model fuses monocular image features and sparse LiDAR features to predict initial depth maps.
Our model outperforms the state-of-the-art sparse-LiDAR-based method (Pseudo-LiDAR++) by more than 68% for the downstream task monocular 3D object detection.
arXiv Detail & Related papers (2021-09-20T15:28:36Z) - PLUME: Efficient 3D Object Detection from Stereo Images [95.31278688164646]
Existing methods tackle the problem in two steps: first depth estimation is performed, a pseudo LiDAR point cloud representation is computed from the depth estimates, and then object detection is performed in 3D space.
We propose a model that unifies these two tasks in the same metric space.
Our approach achieves state-of-the-art performance on the challenging KITTI benchmark, with significantly reduced inference time compared with existing methods.
arXiv Detail & Related papers (2021-01-17T05:11:38Z) - Multi-view Depth Estimation using Epipolar Spatio-Temporal Networks [87.50632573601283]
We present a novel method for multi-view depth estimation from a single video.
Our method achieves temporally coherent depth estimation results by using a novel Epipolar Spatio-Temporal (EST) transformer.
To reduce the computational cost, inspired by recent Mixture-of-Experts models, we design a compact hybrid network.
arXiv Detail & Related papers (2020-11-26T04:04:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.