Hybrid Machine Learning Modeling of Engineering Systems -- A
Probabilistic Perspective Tested on a Multiphase Flow Modeling Case Study
- URL: http://arxiv.org/abs/2205.09196v1
- Date: Wed, 18 May 2022 20:15:25 GMT
- Title: Hybrid Machine Learning Modeling of Engineering Systems -- A
Probabilistic Perspective Tested on a Multiphase Flow Modeling Case Study
- Authors: Timur Bikmukhametov and Johannes J\"aschke
- Abstract summary: We propose a hybrid modeling machine learning framework that allows tuning first principles models to process conditions.
Our approach not only estimates the expected values of the first principles model parameters but also quantifies the uncertainty of these estimates.
In the simulation results, we show how uncertainty estimates of the resulting hybrid models can be used to make better operation decisions.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: To operate process engineering systems in a safe and reliable manner,
predictive models are often used in decision making. In many cases, these are
mechanistic first principles models which aim to accurately describe the
process. In practice, the parameters of these models need to be tuned to the
process conditions at hand. If the conditions change, which is common in
practice, the model becomes inaccurate and needs to be re-tuned. In this paper,
we propose a hybrid modeling machine learning framework that allows tuning
first principles models to process conditions using two different types of
Bayesian Neural Networks. Our approach not only estimates the expected values
of the first principles model parameters but also quantifies the uncertainty of
these estimates. Such an approach of hybrid machine learning modeling is not
yet well described in the literature, so we believe this paper will provide an
additional angle at which hybrid machine learning modeling of physical systems
can be considered. As an example, we choose a multiphase pipe flow process for
which we constructed a three-phase steady state model based on the drift-flux
approach which can be used for modeling of pipe and well flow behavior in oil
and gas production systems with or without the neural network tuning. In the
simulation results, we show how uncertainty estimates of the resulting hybrid
models can be used to make better operation decisions.
Related papers
- Transferable Post-training via Inverse Value Learning [83.75002867411263]
We propose modeling changes at the logits level during post-training using a separate neural network (i.e., the value network)
After training this network on a small base model using demonstrations, this network can be seamlessly integrated with other pre-trained models during inference.
We demonstrate that the resulting value network has broad transferability across pre-trained models of different parameter sizes.
arXiv Detail & Related papers (2024-10-28T13:48:43Z) - EMR-Merging: Tuning-Free High-Performance Model Merging [55.03509900949149]
We show that Elect, Mask & Rescale-Merging (EMR-Merging) shows outstanding performance compared to existing merging methods.
EMR-Merging is tuning-free, thus requiring no data availability or any additional training while showing impressive performance.
arXiv Detail & Related papers (2024-05-23T05:25:45Z) - Stochastic Parameterizations: Better Modelling of Temporal Correlations
using Probabilistic Machine Learning [1.5293427903448025]
We show that by using a physically-informed recurrent neural network within a probabilistic framework, our model for the 96 atmospheric simulation is competitive.
This is due to a superior ability to model temporal correlations compared to standard first-order autoregressive schemes.
We evaluate across a number of metrics from the literature, but also discuss how the probabilistic metric of likelihood may be a unifying choice for future climate models.
arXiv Detail & Related papers (2022-03-28T14:51:42Z) - Learning continuous models for continuous physics [94.42705784823997]
We develop a test based on numerical analysis theory to validate machine learning models for science and engineering applications.
Our results illustrate how principled numerical analysis methods can be coupled with existing ML training/testing methodologies to validate models for science and engineering applications.
arXiv Detail & Related papers (2022-02-17T07:56:46Z) - Enhancing predictive skills in physically-consistent way: Physics
Informed Machine Learning for Hydrological Processes [1.0635248457021496]
We develop a Physics Informed Machine Learning (PIML) model that combines the process understanding of conceptual hydrological model with predictive abilities of state-of-the-art ML models.
We apply the proposed model to predict the monthly time series of the target (streamflow) and intermediate variables (actual evapotranspiration) in the Narmada river basin in India.
arXiv Detail & Related papers (2021-04-22T12:13:42Z) - Using Data Assimilation to Train a Hybrid Forecast System that Combines
Machine-Learning and Knowledge-Based Components [52.77024349608834]
We consider the problem of data-assisted forecasting of chaotic dynamical systems when the available data is noisy partial measurements.
We show that by using partial measurements of the state of the dynamical system, we can train a machine learning model to improve predictions made by an imperfect knowledge-based model.
arXiv Detail & Related papers (2021-02-15T19:56:48Z) - Generative Temporal Difference Learning for Infinite-Horizon Prediction [101.59882753763888]
We introduce the $gamma$-model, a predictive model of environment dynamics with an infinite probabilistic horizon.
We discuss how its training reflects an inescapable tradeoff between training-time and testing-time compounding errors.
arXiv Detail & Related papers (2020-10-27T17:54:12Z) - Using Bayesian deep learning approaches for uncertainty-aware building
energy surrogate models [0.0]
Machine learning surrogate models are trained to emulate slow, high-fidelity engineering simulation models.
Deep learning models exist that follow the Bayesian paradigm.
We show that errors can be reduced by up to 30% when the 10% of samples with the highest uncertainty are transferred to the high-fidelity model.
arXiv Detail & Related papers (2020-10-05T15:04:18Z) - Introduction to Rare-Event Predictive Modeling for Inferential
Statisticians -- A Hands-On Application in the Prediction of Breakthrough
Patents [0.0]
We introduce a machine learning (ML) approach to quantitative analysis geared towards optimizing the predictive performance.
We discuss the potential synergies between the two fields against the backdrop of this, at first glance, target-incompatibility.
We are providing a hands-on predictive modeling introduction for a quantitative social science audience while aiming at demystifying computer science jargon.
arXiv Detail & Related papers (2020-03-30T13:06:25Z) - Developing a Hybrid Data-Driven, Mechanistic Virtual Flow Meter -- a
Case Study [0.0]
This research investigates a hybrid modeling approach, utilizing techniques from both the aforementioned areas of expertise, to model a well production choke.
The choke is represented with a simplified set of first-principle equations and a neural network to estimate the valve flow coefficient.
arXiv Detail & Related papers (2020-02-07T12:35:33Z) - Model Reuse with Reduced Kernel Mean Embedding Specification [70.044322798187]
We present a two-phase framework for finding helpful models for a current application.
In the upload phase, when a model is uploading into the pool, we construct a reduced kernel mean embedding (RKME) as a specification for the model.
Then in the deployment phase, the relatedness of the current task and pre-trained models will be measured based on the value of the RKME specification.
arXiv Detail & Related papers (2020-01-20T15:15:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.