Enhancing predictive skills in physically-consistent way: Physics
Informed Machine Learning for Hydrological Processes
- URL: http://arxiv.org/abs/2104.11009v1
- Date: Thu, 22 Apr 2021 12:13:42 GMT
- Title: Enhancing predictive skills in physically-consistent way: Physics
Informed Machine Learning for Hydrological Processes
- Authors: Pravin Bhasme, Jenil Vagadiya, Udit Bhatia
- Abstract summary: We develop a Physics Informed Machine Learning (PIML) model that combines the process understanding of conceptual hydrological model with predictive abilities of state-of-the-art ML models.
We apply the proposed model to predict the monthly time series of the target (streamflow) and intermediate variables (actual evapotranspiration) in the Narmada river basin in India.
- Score: 1.0635248457021496
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Current modeling approaches for hydrological modeling often rely on either
physics-based or data-science methods, including Machine Learning (ML)
algorithms. While physics-based models tend to rigid structure resulting in
unrealistic parameter values in certain instances, ML algorithms establish the
input-output relationship while ignoring the constraints imposed by well-known
physical processes. While there is a notion that the physics model enables
better process understanding and ML algorithms exhibit better predictive
skills, scientific knowledge that does not add to predictive ability may be
deceptive. Hence, there is a need for a hybrid modeling approach to couple ML
algorithms and physics-based models in a synergistic manner. Here we develop a
Physics Informed Machine Learning (PIML) model that combines the process
understanding of conceptual hydrological model with predictive abilities of
state-of-the-art ML models. We apply the proposed model to predict the monthly
time series of the target (streamflow) and intermediate variables (actual
evapotranspiration) in the Narmada river basin in India. Our results show the
capability of the PIML model to outperform a purely conceptual model ($abcd$
model) and ML algorithms while ensuring the physical consistency in outputs
validated through water balance analysis. The systematic approach for combining
conceptual model structure with ML algorithms could be used to improve the
predictive accuracy of crucial hydrological processes important for flood risk
assessment.
Related papers
- Methods to improve run time of hydrologic models: opportunities and challenges in the machine learning era [0.0]
The application of Machine Learning (ML) to hydrologic modeling is fledgling.
One of the key reasons to adopt ML algorithms over physics-based models is its computational efficiency advantage and flexibility to work with various data sets.
This paper covers the opportunities and challenges of adopting ML for hydrological modeling and subsequently how it can help to improve the simulation time of physics-based models and future works that should be addressed.
arXiv Detail & Related papers (2024-08-05T05:27:19Z) - Replication Study: Enhancing Hydrological Modeling with Physics-Guided
Machine Learning [0.0]
Current hydrological modeling methods combine data-driven Machine Learning algorithms and traditional physics-based models.
Despite the accuracy of ML in outcome prediction, the integration of scientific knowledge is crucial for reliable predictions.
This study introduces a Physics Informed Machine Learning model, which merges the process understanding of conceptual hydrological models with the predictive efficiency of ML algorithms.
arXiv Detail & Related papers (2024-02-21T16:26:59Z) - Discovering Interpretable Physical Models using Symbolic Regression and
Discrete Exterior Calculus [55.2480439325792]
We propose a framework that combines Symbolic Regression (SR) and Discrete Exterior Calculus (DEC) for the automated discovery of physical models.
DEC provides building blocks for the discrete analogue of field theories, which are beyond the state-of-the-art applications of SR to physical problems.
We prove the effectiveness of our methodology by re-discovering three models of Continuum Physics from synthetic experimental data.
arXiv Detail & Related papers (2023-10-10T13:23:05Z) - Stabilizing Machine Learning Prediction of Dynamics: Noise and
Noise-inspired Regularization [58.720142291102135]
Recent has shown that machine learning (ML) models can be trained to accurately forecast the dynamics of chaotic dynamical systems.
In the absence of mitigating techniques, this technique can result in artificially rapid error growth, leading to inaccurate predictions and/or climate instability.
We introduce Linearized Multi-Noise Training (LMNT), a regularization technique that deterministically approximates the effect of many small, independent noise realizations added to the model input during training.
arXiv Detail & Related papers (2022-11-09T23:40:52Z) - Learning continuous models for continuous physics [94.42705784823997]
We develop a test based on numerical analysis theory to validate machine learning models for science and engineering applications.
Our results illustrate how principled numerical analysis methods can be coupled with existing ML training/testing methodologies to validate models for science and engineering applications.
arXiv Detail & Related papers (2022-02-17T07:56:46Z) - Prediction of liquid fuel properties using machine learning models with
Gaussian processes and probabilistic conditional generative learning [56.67751936864119]
The present work aims to construct cheap-to-compute machine learning (ML) models to act as closure equations for predicting the physical properties of alternative fuels.
Those models can be trained using the database from MD simulations and/or experimental measurements in a data-fusion-fidelity approach.
The results show that ML models can predict accurately the fuel properties of a wide range of pressure and temperature conditions.
arXiv Detail & Related papers (2021-10-18T14:43:50Z) - Hessian-based toolbox for reliable and interpretable machine learning in
physics [58.720142291102135]
We present a toolbox for interpretability and reliability, extrapolation of the model architecture.
It provides a notion of the influence of the input data on the prediction at a given test point, an estimation of the uncertainty of the model predictions, and an agnostic score for the model predictions.
Our work opens the road to the systematic use of interpretability and reliability methods in ML applied to physics and, more generally, science.
arXiv Detail & Related papers (2021-08-04T16:32:59Z) - Physics-Integrated Variational Autoencoders for Robust and Interpretable
Generative Modeling [86.9726984929758]
We focus on the integration of incomplete physics models into deep generative models.
We propose a VAE architecture in which a part of the latent space is grounded by physics.
We demonstrate generative performance improvements over a set of synthetic and real-world datasets.
arXiv Detail & Related papers (2021-02-25T20:28:52Z) - Macroscopic Traffic Flow Modeling with Physics Regularized Gaussian
Process: Generalized Formulations [5.827236278192557]
This study presents a new modeling framework, named physics regularized Gaussian process (PRGP)
This novel approach can encode physics models, i.e., classical traffic flow models, into the Gaussian process architecture and so as to regularize the Machine Learning training process.
To prove the effectiveness of the proposed model, this paper conducts empirical studies on a real-world dataset that is collected from a stretch of I-15 freeway, Utah.
arXiv Detail & Related papers (2020-07-14T17:27:23Z) - Modeling System Dynamics with Physics-Informed Neural Networks Based on
Lagrangian Mechanics [3.214927790437842]
Two main modeling approaches often fail to meet requirements: first principles methods suffer from high bias, whereas data-driven modeling tends to have high variance.
We present physics-informed neural ordinary differential equations (PINODE), a hybrid model that combines the two modeling techniques to overcome the aforementioned problems.
Our findings are of interest for model-based control and system identification of mechanical systems.
arXiv Detail & Related papers (2020-05-29T15:10:43Z) - Macroscopic Traffic Flow Modeling with Physics Regularized Gaussian
Process: A New Insight into Machine Learning Applications [14.164058812512371]
This study presents a new modeling framework, named physics regularized machine learning (PRML), to encode classical traffic flow models into the machine learning architecture.
To prove the effectiveness of the proposed model, this paper conducts empirical studies on a real-world dataset which is collected from a stretch of I-15 freeway, Utah.
arXiv Detail & Related papers (2020-02-06T17:22:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.