論文の概要: Constraint-Based Causal Structure Learning from Undersampled Graphs
- arxiv url: http://arxiv.org/abs/2205.09235v1
- Date: Wed, 18 May 2022 22:38:57 GMT
- ステータス: 処理完了
- システム内更新日: 2022-05-21 09:07:15.438585
- Title: Constraint-Based Causal Structure Learning from Undersampled Graphs
- Title(参考訳): アンダーサンプルグラフによる制約に基づく因果構造学習
- Authors: Mohammadsajad Abavisani, David Danks and Sergey Plis
- Abstract要約: 時系列データから因果学習アルゴリズムによって推定される図形構造は、非常に誤解を招く因果情報を提供することができる。
制約プログラミングと問題構造に関する理論的知見と、許容因果関係に関する事前情報を組み合わせる。
結果のシステムは、確率変数のかなり大きな集合(>100)までスケールし、時間スケールの差の正確な知識を必要とせず、エッジの誤同定とパラメトリック接続強度をサポートし、多くの可能な解の最適選択を提供する。
- 参考スコア(独自算出の注目度): 1.8448103154557947
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graphical structures estimated by causal learning algorithms from time series
data can provide highly misleading causal information if the causal timescale
of the generating process fails to match the measurement timescale of the data.
Although this problem has been recently recognized, practitioners have limited
resources to respond to it, and so must continue using models that they know
are likely misleading. Existing methods either (a) require that the difference
between causal and measurement timescales is known; or (b) can handle only very
small number of random variables when the timescale difference is unknown; or
(c) apply to only pairs of variables, though with fewer assumptions about prior
knowledge; or (d) return impractically too many solutions. This paper addresses
all four challenges. We combine constraint programming with both theoretical
insights into the problem structure and prior information about admissible
causal interactions. The resulting system provides a practical approach that
scales to significantly larger sets (>100) of random variables, does not
require precise knowledge of the timescale difference, supports edge
misidentification and parametric connection strengths, and can provide the
optimum choice among many possible solutions. The cumulative impact of these
improvements is gain of multiple orders of magnitude in speed and
informativeness.
- Abstract(参考訳): 時系列データから因果学習アルゴリズムによって推定されるグラフィカルな構造は、生成プロセスの因果時間スケールがデータの計測時間スケールと一致しない場合に、高い誤解を招く因果情報を提供できる。
この問題は最近認識されているが、実践者はそれに対応するリソースが限られており、彼らが知っているモデルを使い続ける必要がある。
既存の方法も
(a)因果時間と測定時間の差が知られていること、又は
(b)時間スケールの差が不明な場合、ごく少数の確率変数しか扱えないこと、又は
(c) 先行知識に関する仮定が少なくても,変数のペアのみに適用する。
(d)非現実的に多くの解を返す。
本稿は4つの課題に対処する。
制約プログラミングと問題構造に関する理論的知見と、許容因果関係に関する事前情報を組み合わせる。
結果のシステムは、確率変数のかなり大きな集合(>100)にスケールし、時間スケールの差の正確な知識を必要とせず、エッジの誤同定とパラメトリック接続強度をサポートし、多くの可能な解の最適選択を提供する実践的なアプローチを提供する。
これらの改善の累積的な影響は、数桁の速度と情報性の獲得である。
関連論文リスト
- Learning causal graphs using variable grouping according to ancestral relationship [7.126300090990439]
サンプルサイズが変数数に対して小さい場合には,既存手法を用いた因果グラフの推定精度が低下する。
サンプルサイズが変数の数より小さい場合、いくつかのメソッドは実現不可能である。
これらの問題を回避すべく、ある研究者は分割・対数アプローチを用いた因果構造学習アルゴリズムを提案した。
論文 参考訳(メタデータ) (2024-03-21T04:42:04Z) - Graph Spatiotemporal Process for Multivariate Time Series Anomaly
Detection with Missing Values [67.76168547245237]
本稿では,グラフ時間過程と異常スコアラを用いて異常を検出するGST-Proという新しいフレームワークを提案する。
実験結果から,GST-Pro法は時系列データ中の異常を効果的に検出し,最先端の手法より優れていることがわかった。
論文 参考訳(メタデータ) (2024-01-11T10:10:16Z) - Bootstrap aggregation and confidence measures to improve time series
causal discovery [0.0]
本稿では,時間的依存関係とラグ構造を保存する時系列因果発見のための新しいブートストラップ手法を提案する。
我々は、この手法を、最先端の条件付き独立性に基づくアルゴリズムPCMCI+と組み合わせる。
論文 参考訳(メタデータ) (2023-06-15T08:37:16Z) - Learning to Bound Counterfactual Inference in Structural Causal Models
from Observational and Randomised Data [64.96984404868411]
我々は、従来のEMベースのアルゴリズムを拡張するための全体的なデータの特徴付けを導出する。
新しいアルゴリズムは、そのような混合データソースからモデルパラメータの(不特定性)領域を近似することを学ぶ。
反実的な結果に間隔近似を与え、それが特定可能な場合の点に崩壊する。
論文 参考訳(メタデータ) (2022-12-06T12:42:11Z) - Improving Efficiency and Accuracy of Causal Discovery Using a
Hierarchical Wrapper [7.570246812206772]
観測データからの因果発見は、科学の多くの分野において重要なツールである。
大規模なサンプルリミットでは、音と完全な因果探索アルゴリズムが導入されている。
しかし、これらのアルゴリズムが使用する統計的テストのパワーを制限するのは、有限のトレーニングデータのみである。
論文 参考訳(メタデータ) (2021-07-11T09:24:49Z) - DPER: Efficient Parameter Estimation for Randomly Missing Data [0.24466725954625884]
本稿では,1クラス・複数クラスのランダムに欠落したデータセットに対して,最大推定値(MLE)を求めるアルゴリズムを提案する。
我々のアルゴリズムは、データを通して複数のイテレーションを必要としないので、他の方法よりも時間のかかることを約束します。
論文 参考訳(メタデータ) (2021-06-06T16:37:48Z) - Consistency of mechanistic causal discovery in continuous-time using
Neural ODEs [85.7910042199734]
ダイナミカルシステムの研究において,連続時間における因果的発見を検討する。
本稿では,ニューラルネットワークを用いた因果探索アルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-05-06T08:48:02Z) - Normalized multivariate time series causality analysis and causal graph
reconstruction [0.0]
因果分析は科学の中心にある重要な問題であり、データサイエンスと機械学習において特に重要である。
この研究は、情報フローに基づく2変数時間系列因果推論の長期一般化とともに、この作業ラインをコミュニティに紹介する。
結果として得られる公式は透明であり、計算的に非常に効率的なアルゴリズムとして実装することができる。
論文 参考訳(メタデータ) (2021-04-23T00:46:35Z) - Resource Allocation in Multi-armed Bandit Exploration: Overcoming
Sublinear Scaling with Adaptive Parallelism [107.48538091418412]
腕の引っ張りに様々な量の資源を割り当てることができる分割可能な資源にアクセス可能な場合,マルチアームの帯状地における探索について検討する。
特に、分散コンピューティングリソースの割り当てに重点を置いており、プル毎により多くのリソースを割り当てることで、結果をより早く得ることができます。
論文 参考訳(メタデータ) (2020-10-31T18:19:29Z) - TadGAN: Time Series Anomaly Detection Using Generative Adversarial
Networks [73.01104041298031]
TadGANは、GAN(Generative Adversarial Networks)上に構築された教師なしの異常検出手法である。
時系列の時間相関を捉えるために,ジェネレータと批評家のベースモデルとしてLSTMリカレントニューラルネットワークを用いる。
提案手法の性能と一般化性を示すため,いくつかの異常スコアリング手法を検証し,最も適した手法を報告する。
論文 参考訳(メタデータ) (2020-09-16T15:52:04Z) - Learning to Accelerate Heuristic Searching for Large-Scale Maximum
Weighted b-Matching Problems in Online Advertising [51.97494906131859]
バイパルタイトbマッチングはアルゴリズム設計の基本であり、経済市場や労働市場などに広く適用されている。
既存の正確で近似的なアルゴリズムは、通常そのような設定で失敗する。
我々は、以前の事例から学んだ知識を活用して、新しい問題インスタンスを解決するtextttNeuSearcherを提案する。
論文 参考訳(メタデータ) (2020-05-09T02:48:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。