Beyond Labels: Visual Representations for Bone Marrow Cell Morphology
Recognition
- URL: http://arxiv.org/abs/2205.09880v1
- Date: Thu, 19 May 2022 22:05:46 GMT
- Title: Beyond Labels: Visual Representations for Bone Marrow Cell Morphology
Recognition
- Authors: Shayan Fazeli, Alireza Samiei, Thomas D. Lee, Majid Sarrafzadeh
- Abstract summary: We improve on the state-of-the-art methodologies of bone marrow cell recognition by deviating from sole reliance on labeled data.
Our experiments demonstrate significant performance improvements in conducting different bone marrow cell recognition tasks.
- Score: 3.4352862428120123
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Analyzing and inspecting bone marrow cell cytomorphology is a critical but
highly complex and time-consuming component of hematopathology diagnosis.
Recent advancements in artificial intelligence have paved the way for the
application of deep learning algorithms to complex medical tasks. Nevertheless,
there are many challenges in applying effective learning algorithms to medical
image analysis, such as the lack of sufficient and reliably annotated training
datasets and the highly class-imbalanced nature of most medical data. Here, we
improve on the state-of-the-art methodologies of bone marrow cell recognition
by deviating from sole reliance on labeled data and leveraging self-supervision
in training our learning models. We investigate our approach's effectiveness in
identifying bone marrow cell types. Our experiments demonstrate significant
performance improvements in conducting different bone marrow cell recognition
tasks compared to the current state-of-the-art methodologies.
Related papers
- CellPilot [3.2096430458509317]
This work introduces CellPilot, a framework that bridges the gap between automatic and interactive segmentation.
Our model was trained on over 675,000 masks of nine diverse cell and gland segmentation datasets, spanning 16 organs.
We make the model and a graphical user interface designed to assist practitioners in creating large-scale annotated datasets available as open-source.
arXiv Detail & Related papers (2024-11-23T10:31:10Z) - Anatomy-Guided Radiology Report Generation with Pathology-Aware Regional Prompts [3.1019279528120363]
Radiology reporting generative AI holds significant potential to alleviate clinical workloads and streamline medical care.
Existing systems often fall short due to their reliance on fixed size, patch-level image features and insufficient incorporation of pathological information.
We propose an innovative approach that leverages pathology-aware regional prompts to explicitly integrate anatomical and pathological information of various scales.
arXiv Detail & Related papers (2024-11-16T12:36:20Z) - Explainable AI Methods for Multi-Omics Analysis: A Survey [3.885941688264509]
Multi-omics refers to the integrative analysis of data derived from multiple 'omes'
Deep learning methods are increasingly utilized to integrate multi-omics data, offering insights into molecular interactions and enhancing research into complex diseases.
These models, with their numerous interconnected layers and nonlinear relationships, often function as black boxes, lacking transparency in decision-making processes.
This review explores how xAI can improve the interpretability of deep learning models in multi-omics research, highlighting its potential to provide clinicians with clear insights.
arXiv Detail & Related papers (2024-10-15T05:01:17Z) - TopOC: Topological Deep Learning for Ovarian and Breast Cancer Diagnosis [3.262230127283452]
Topological data analysis offers a unique approach by extracting essential information through the evaluation of topological patterns across different color channels.
We show that the inclusion of topological features significantly improves the differentiation of tumor types in ovarian and breast cancers.
arXiv Detail & Related papers (2024-10-13T12:24:13Z) - Knowledge-Guided Prompt Learning for Lifespan Brain MR Image Segmentation [53.70131202548981]
We present a two-step segmentation framework employing Knowledge-Guided Prompt Learning (KGPL) for brain MRI.
Specifically, we first pre-train segmentation models on large-scale datasets with sub-optimal labels.
The introduction of knowledge-wise prompts captures semantic relationships between anatomical variability and biological processes.
arXiv Detail & Related papers (2024-07-31T04:32:43Z) - Optimizing Skin Lesion Classification via Multimodal Data and Auxiliary
Task Integration [54.76511683427566]
This research introduces a novel multimodal method for classifying skin lesions, integrating smartphone-captured images with essential clinical and demographic information.
A distinctive aspect of this method is the integration of an auxiliary task focused on super-resolution image prediction.
The experimental evaluations have been conducted using the PAD-UFES20 dataset, applying various deep-learning architectures.
arXiv Detail & Related papers (2024-02-16T05:16:20Z) - LifeLonger: A Benchmark for Continual Disease Classification [59.13735398630546]
We introduce LifeLonger, a benchmark for continual disease classification on the MedMNIST collection.
Task and class incremental learning of diseases address the issue of classifying new samples without re-training the models from scratch.
Cross-domain incremental learning addresses the issue of dealing with datasets originating from different institutions while retaining the previously obtained knowledge.
arXiv Detail & Related papers (2022-04-12T12:25:05Z) - SSD-KD: A Self-supervised Diverse Knowledge Distillation Method for
Lightweight Skin Lesion Classification Using Dermoscopic Images [62.60956024215873]
Skin cancer is one of the most common types of malignancy, affecting a large population and causing a heavy economic burden worldwide.
Most studies in skin cancer detection keep pursuing high prediction accuracies without considering the limitation of computing resources on portable devices.
This study specifically proposes a novel method, termed SSD-KD, that unifies diverse knowledge into a generic KD framework for skin diseases classification.
arXiv Detail & Related papers (2022-03-22T06:54:29Z) - Deep CNNs for Peripheral Blood Cell Classification [0.0]
We benchmark 27 popular deep convolutional neural network architectures on the microscopic peripheral blood cell images dataset.
We fine-tune the state-of-the-art image classification models pre-trained on the ImageNet dataset for blood cell classification.
arXiv Detail & Related papers (2021-10-18T17:56:07Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
We focus on few-shot disease subtype prediction problem, identifying subgroups of similar patients.
We introduce meta learning techniques to develop a new model, which can extract the common experience or knowledge from interrelated clinical tasks.
Our new model is built upon a carefully designed meta-learner, called Prototypical Network, that is a simple yet effective meta learning machine for few-shot image classification.
arXiv Detail & Related papers (2020-09-02T02:50:30Z) - Semi-supervised Medical Image Classification with Relation-driven
Self-ensembling Model [71.80319052891817]
We present a relation-driven semi-supervised framework for medical image classification.
It exploits the unlabeled data by encouraging the prediction consistency of given input under perturbations.
Our method outperforms many state-of-the-art semi-supervised learning methods on both single-label and multi-label image classification scenarios.
arXiv Detail & Related papers (2020-05-15T06:57:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.