論文の概要: Cardinality-Minimal Explanations for Monotonic Neural Networks
- arxiv url: http://arxiv.org/abs/2205.09901v3
- Date: Tue, 2 May 2023 14:46:44 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-03 18:12:16.830908
- Title: Cardinality-Minimal Explanations for Monotonic Neural Networks
- Title(参考訳): モノトニックニューラルネットワークの最小性記述法
- Authors: Ouns El Harzli, Bernardo Cuenca Grau, Ian Horrocks
- Abstract要約: 本稿では,単調関数を実装したニューラルモデルに着目して,トラクタビリティを回復できるかどうかを検討する。
関連する決定問題は引き続き難解であるが、有利な時間で解決可能であることを示すことができる。
- 参考スコア(独自算出の注目度): 25.212444848632515
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In recent years, there has been increasing interest in explanation methods
for neural model predictions that offer precise formal guarantees. These
include abductive (respectively, contrastive) methods, which aim to compute
minimal subsets of input features that are sufficient for a given prediction to
hold (respectively, to change a given prediction). The corresponding decision
problems are, however, known to be intractable. In this paper, we investigate
whether tractability can be regained by focusing on neural models implementing
a monotonic function. Although the relevant decision problems remain
intractable, we can show that they become solvable in polynomial time by means
of greedy algorithms if we additionally assume that the activation functions
are continuous everywhere and differentiable almost everywhere. Our experiments
suggest favourable performance of our algorithms.
- Abstract(参考訳): 近年、正確な形式的保証を提供する神経モデル予測のための説明法への関心が高まっている。
これは、与えられた予測が保持するのに十分な入力特徴の最小部分集合を計算することを目的としている(従って、与えられた予測を変更するために)。
しかし、対応する決定問題は難解であることが知られている。
本稿では,単調関数を実装したニューラルモデルに着目して,トラクタビリティを回復できるかどうかを検討する。
関連する決定問題はいまだに解決できないが、活性化関数が至る所で連続であり、ほぼ至るところで微分可能であると仮定すれば、アルゴリズムによって多項式時間で解くことができることを示すことができる。
我々の実験はアルゴリズムの好ましい性能を示唆する。
関連論文リスト
- A new approach to generalisation error of machine learning algorithms:
Estimates and convergence [0.0]
本稿では,(一般化)誤差の推定と収束に対する新しいアプローチを提案する。
本研究の結果は,ニューラルネットワークの構造的仮定を伴わない誤差の推定を含む。
論文 参考訳(メタデータ) (2023-06-23T20:57:31Z) - Promises and Pitfalls of the Linearized Laplace in Bayesian Optimization [73.80101701431103]
線形化ラプラス近似(LLA)はベイズニューラルネットワークの構築に有効で効率的であることが示されている。
ベイズ最適化におけるLLAの有用性について検討し,その性能と柔軟性を強調した。
論文 参考訳(メタデータ) (2023-04-17T14:23:43Z) - Semantic Strengthening of Neuro-Symbolic Learning [85.6195120593625]
ニューロシンボリックアプローチは一般に確率論的目的のファジィ近似を利用する。
トラクタブル回路において,これを効率的に計算する方法を示す。
我々は,Warcraftにおける最小コストパスの予測,最小コスト完全マッチングの予測,スドクパズルの解法という3つの課題に対して,アプローチを検証した。
論文 参考訳(メタデータ) (2023-02-28T00:04:22Z) - High-Probability Bounds for Stochastic Optimization and Variational
Inequalities: the Case of Unbounded Variance [59.211456992422136]
制約の少ない仮定の下で高確率収束結果のアルゴリズムを提案する。
これらの結果は、標準機能クラスに適合しない問題を最適化するために検討された手法の使用を正当化する。
論文 参考訳(メタデータ) (2023-02-02T10:37:23Z) - Stochastic Langevin Differential Inclusions with Applications to Machine Learning [5.274477003588407]
ランゲヴィン型微分包含物の流動と性質に関する基礎的な結果を示す。
特に、解の存在が強く、また自由エネルギー関数の正準最小化が示される。
論文 参考訳(メタデータ) (2022-06-23T08:29:17Z) - Constrained Monotonic Neural Networks [0.685316573653194]
金融や医療といった多くの重要な分野におけるニューラルネットワークの採用は、その予測を説明する必要性によって妨げられている。
モノトニック性制約は、現実世界のシナリオで最も要求された特性の1つである。
我々は、$mathbbRn$ のコンパクト部分集合上の任意の連続単調関数を近似できることを示した。
論文 参考訳(メタデータ) (2022-05-24T04:26:10Z) - Message Passing Neural PDE Solvers [60.77761603258397]
我々は、バックプロップ最適化されたニューラル関数近似器で、グラフのアリーデザインのコンポーネントを置き換えるニューラルメッセージパッシング解決器を構築した。
本稿では, 有限差分, 有限体積, WENOスキームなどの古典的手法を表現的に含んでいることを示す。
本研究では, 異なる領域のトポロジ, 方程式パラメータ, 離散化などにおける高速, 安定, 高精度な性能を, 1次元, 2次元で検証する。
論文 参考訳(メタデータ) (2022-02-07T17:47:46Z) - Modeling Implicit Bias with Fuzzy Cognitive Maps [0.0]
本稿では、構造化データセットにおける暗黙バイアスを定量化するファジィ認知マップモデルを提案する。
本稿では,ニューロンの飽和を防止する正規化様伝達関数を備えた新しい推論機構を提案する。
論文 参考訳(メタデータ) (2021-12-23T17:04:12Z) - Generalization of Neural Combinatorial Solvers Through the Lens of
Adversarial Robustness [68.97830259849086]
ほとんどのデータセットは単純なサブプロブレムのみをキャプチャし、おそらくは突発的な特徴に悩まされる。
本研究では, 局所的な一般化特性である対向ロバスト性について検討し, 厳密でモデル固有な例と突発的な特徴を明らかにする。
他のアプリケーションとは異なり、摂動モデルは知覚できないという主観的な概念に基づいて設計されているため、摂動モデルは効率的かつ健全である。
驚くべきことに、そのような摂動によって、十分に表現力のあるニューラルソルバは、教師あり学習で共通する正確さと悪質さのトレードオフの限界に悩まされない。
論文 参考訳(メタデータ) (2021-10-21T07:28:11Z) - Gradient Descent on Infinitely Wide Neural Networks: Global Convergence
and Generalization [0.0]
多くの教師付き機械学習手法が最適化問題として採用されている。
パラメータに線形な予測モデルの場合、これはしばしば予測保証の問題を引き起こす。
本稿では,同種活性化機能を持つ2層ニューラルネットワークについて考察する。
論文 参考訳(メタデータ) (2021-10-15T13:25:32Z) - Relaxing the Constraints on Predictive Coding Models [62.997667081978825]
予測符号化(英: Predictive coding)は、脳が行う主計算が予測誤差の最小化であるとする皮質機能の影響力のある理論である。
アルゴリズムの標準的な実装は、同じ前方と後方の重み、後方の非線形微分、1-1エラーユニット接続といった、潜在的に神経的に予測できない特徴を含んでいる。
本稿では,これらの特徴はアルゴリズムに不可欠なものではなく,Hebbianの更新ルールを用いてパラメータセットを直接あるいは学習することで,学習性能に悪影響を及ぼすことなく除去可能であることを示す。
論文 参考訳(メタデータ) (2020-10-02T15:21:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。