論文の概要: Message Passing Neural PDE Solvers
- arxiv url: http://arxiv.org/abs/2202.03376v3
- Date: Mon, 20 Mar 2023 07:52:57 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-24 05:13:28.280329
- Title: Message Passing Neural PDE Solvers
- Title(参考訳): メッセージパッシング型ニューラルPDE解法
- Authors: Johannes Brandstetter, Daniel Worrall, Max Welling
- Abstract要約: 我々は、バックプロップ最適化されたニューラル関数近似器で、グラフのアリーデザインのコンポーネントを置き換えるニューラルメッセージパッシング解決器を構築した。
本稿では, 有限差分, 有限体積, WENOスキームなどの古典的手法を表現的に含んでいることを示す。
本研究では, 異なる領域のトポロジ, 方程式パラメータ, 離散化などにおける高速, 安定, 高精度な性能を, 1次元, 2次元で検証する。
- 参考スコア(独自算出の注目度): 60.77761603258397
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The numerical solution of partial differential equations (PDEs) is difficult,
having led to a century of research so far. Recently, there have been pushes to
build neural--numerical hybrid solvers, which piggy-backs the modern trend
towards fully end-to-end learned systems. Most works so far can only generalize
over a subset of properties to which a generic solver would be faced,
including: resolution, topology, geometry, boundary conditions, domain
discretization regularity, dimensionality, etc. In this work, we build a
solver, satisfying these properties, where all the components are based on
neural message passing, replacing all heuristically designed components in the
computation graph with backprop-optimized neural function approximators. We
show that neural message passing solvers representationally contain some
classical methods, such as finite differences, finite volumes, and WENO
schemes. In order to encourage stability in training autoregressive models, we
put forward a method that is based on the principle of zero-stability, posing
stability as a domain adaptation problem. We validate our method on various
fluid-like flow problems, demonstrating fast, stable, and accurate performance
across different domain topologies, equation parameters, discretizations, etc.,
in 1D and 2D.
- Abstract(参考訳): 偏微分方程式(PDE)の数値解は困難であり、これまでの1世紀にわたる研究に繋がった。
近年,完全エンド・ツー・エンド学習システムへの最新のトレンドを裏付ける,ニューラルネットワーク-数値ハイブリッドソルバの開発が進められている。
これまでのほとんどの研究は、分解、位相、幾何学、境界条件、領域の離散化正則性、次元性など、一般的な解法が直面するような性質のサブセットにのみ一般化できる。
本研究では,計算グラフ内のヒューリスティックに設計されたすべてのコンポーネントを,バックプロップ最適化されたニューラル関数近似器に置き換えることで,これらの特性を満たす解法を構築する。
本稿では, 有限差分, 有限体積, WENOスキームなどの古典的手法を表現的に含んでいることを示す。
自己回帰モデルの訓練における安定性を高めるために,ゼロ安定性の原理に基づく手法を提案し,ドメイン適応問題として安定性を呈する。
本手法は, 様々な流体状流れ問題に対する検証を行い, 1次元および2次元において, 異なるドメイントポロジー, 方程式パラメータ, 離散化など, 高速, 安定, 正確な性能を示す。
関連論文リスト
- A Physics-driven GraphSAGE Method for Physical Process Simulations
Described by Partial Differential Equations [2.1217718037013635]
物理駆動型グラフSAGE法は不規則なPDEによって支配される問題を解くために提案される。
距離関連エッジ機能と特徴マッピング戦略は、トレーニングと収束を支援するために考案された。
ガウス特異性ランダム場源によりパラメータ化された熱伝導問題に対するロバストPDEサロゲートモデルの構築に成功した。
論文 参考訳(メタデータ) (2024-03-13T14:25:15Z) - A Stable and Scalable Method for Solving Initial Value PDEs with Neural
Networks [52.5899851000193]
我々は,ネットワークの条件が悪くなるのを防止し,パラメータ数で時間線形に動作するODEベースのIPPソルバを開発した。
このアプローチに基づく現在の手法は2つの重要な問題に悩まされていることを示す。
まず、ODEに従うと、問題の条件付けにおいて制御不能な成長が生じ、最終的に許容できないほど大きな数値誤差が生じる。
論文 参考訳(メタデータ) (2023-04-28T17:28:18Z) - Mixed formulation of physics-informed neural networks for
thermo-mechanically coupled systems and heterogeneous domains [0.0]
物理インフォームドニューラルネットワーク(PINN)は境界値問題を解決するための新しいツールである。
近年の研究では、多くの工学的問題に対して損失関数を設計する際には、一階微分を使い、強い形式と弱い形式の方程式を組み合わせることにより、はるかに精度が向上することが示されている。
本研究では,多物理問題,特に定常熱力学的に結合した方程式系を解くために混合定式化を適用することを提案する。
論文 参考訳(メタデータ) (2023-02-09T21:56:59Z) - Generalized Neural Closure Models with Interpretability [28.269731698116257]
我々は、統合された神経部分遅延微分方程式の新規で汎用的な方法論を開発した。
マルコフ型および非マルコフ型ニューラルネットワーク(NN)の閉包パラメータ化を用いて, 偏微分方程式(PDE)における既存/低忠実度力学モデルを直接拡張する。
本研究では, 非線形波動, 衝撃波, 海洋酸性化モデルに基づく4つの実験セットを用いて, 新しい一般化ニューラルクロージャモデル(gnCMs)の枠組みを実証する。
論文 参考訳(メタデータ) (2023-01-15T21:57:43Z) - Semi-supervised Learning of Partial Differential Operators and Dynamical
Flows [68.77595310155365]
本稿では,超ネットワーク解法とフーリエニューラル演算子アーキテクチャを組み合わせた新しい手法を提案する。
本手法は, 1次元, 2次元, 3次元の非線形流体を含む様々な時間発展PDEを用いて実験を行った。
その結果、新しい手法は、監督点の時点における学習精度を向上し、任意の中間時間にその解を補間できることを示した。
論文 参考訳(メタデータ) (2022-07-28T19:59:14Z) - Semi-Implicit Neural Solver for Time-dependent Partial Differential
Equations [4.246966726709308]
本稿では,PDEの任意のクラスに対して,データ駆動方式で最適な反復スキームを学習するためのニューラルソルバを提案する。
従来の反復解法に類似したニューラルソルバの正当性と収束性に関する理論的保証を提供する。
論文 参考訳(メタデータ) (2021-09-03T12:03:10Z) - Meta-Solver for Neural Ordinary Differential Equations [77.8918415523446]
本研究では,ソルバ空間の変動がニューラルODEの性能を向上する方法について検討する。
解法パラメータ化の正しい選択は, 敵の攻撃に対するロバスト性の観点から, 神経odesモデルに大きな影響を与える可能性がある。
論文 参考訳(メタデータ) (2021-03-15T17:26:34Z) - Computational characteristics of feedforward neural networks for solving
a stiff differential equation [0.0]
減衰系をモデル化する単純だが基本的な常微分方程式の解について検討する。
パラメータやメソッドに対して好適な選択を特定できることを示す。
全体として、ニューラルネットワークアプローチによる信頼性と正確な結果を得るために何ができるかを示すことで、この分野の現在の文献を拡張します。
論文 参考訳(メタデータ) (2020-12-03T12:22:24Z) - Large-scale Neural Solvers for Partial Differential Equations [48.7576911714538]
偏微分方程式 (PDE) を解くことは、多くのプロセスがPDEの観点でモデル化できるため、科学の多くの分野において不可欠である。
最近の数値解法では、基礎となる方程式を手動で離散化するだけでなく、分散コンピューティングのための高度で調整されたコードも必要である。
偏微分方程式, 物理インフォームドニューラルネットワーク(PINN)に対する連続メッシュフリーニューラルネットワークの適用性について検討する。
本稿では,解析解に関するGatedPINNの精度と,スペクトル解法などの最先端数値解法について論じる。
論文 参考訳(メタデータ) (2020-09-08T13:26:51Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
物理系をシミュレーションするためのディープラーニングベースの手法を使用する際の大きな課題の1つは、物理ベースのデータの定式化である。
線形複雑度のみを用いて、あらゆる範囲の相互作用をキャプチャする、新しいマルチレベルグラフニューラルネットワークフレームワークを提案する。
実験により, 離散化不変解演算子をPDEに学習し, 線形時間で評価できることを確認した。
論文 参考訳(メタデータ) (2020-06-16T21:56:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。