論文の概要: Self-supervised deep learning MRI reconstruction with Noisier2Noise
- arxiv url: http://arxiv.org/abs/2205.10278v1
- Date: Fri, 20 May 2022 16:19:23 GMT
- ステータス: 処理完了
- システム内更新日: 2022-05-23 18:32:36.436322
- Title: Self-supervised deep learning MRI reconstruction with Noisier2Noise
- Title(参考訳): Noisier2Noiseを用いた自己教師型ディープラーニングMRI再構成
- Authors: Charles Millard, Mark Chiew
- Abstract要約: この作業は、元々は自己教師型Denoisingタスクのために構築されたNoisier2Noiseフレームワークを拡張した。
データアンダースーパーバイス(SSDU)による自己サンプル学習の性能を解析的に説明し、実際は良好に機能するが、これまで理論的な正当性を欠いていた。
また、Noisier2Noiseを用いてSSDUの改良を提案し、その再構築品質とロバスト性を大幅に改善した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In recent years, there has been attention on leveraging the statistical
modeling capabilities of neural networks for reconstructing sub-sampled
Magnetic Resonance Imaging (MRI) data. Most proposed methods assume the
existence of a representative fully-sampled dataset and use fully-supervised
training. However, for many applications, fully sampled training data is not
available, and may be highly impractical to acquire. The development of
self-supervised methods, which use only sub-sampled data for training, are
therefore highly desirable. This work extends the Noisier2Noise framework,
which was originally constructed for self-supervised denoising tasks, to
variable density sub-sampled MRI data. Further, we use the Noisier2Noise
framework to analytically explain the performance of Self-Supervised Learning
via Data Undersampling (SSDU), a recently proposed method that performs well in
practice but until now lacked theoretical justification. We also use
Noisier2Noise to propose a modification of SSDU that we find substantially
improves its reconstruction quality and robustness, offering a test set
mean-squared-error within 1% of fully supervised training on the fastMRI brain
dataset.
- Abstract(参考訳): 近年,サブサンプルMRI(Magnetic Resonance Imaging)データの再構成にニューラルネットワークの統計的モデリング機能を活用することに注目が集まっている。
提案手法は, 代表的な完全サンプルデータセットの存在を前提として, 完全教師付きトレーニングを用いる。
しかし、多くのアプリケーションでは、完全なサンプルトレーニングデータは利用できず、取得には非常に実用的でない可能性がある。
したがって、訓練にサブサンプリングデータのみを使用する自己教師あり手法の開発が極めて望ましい。
この研究は、当初自己教師付き認知タスクのために構築されたNoisier2Noiseフレームワークを、可変密度サブサンプルMRIデータに拡張した。
さらに,noisier2noiseフレームワークを用いて,データアンダーサンプリング(data undersampling, ssdu)による自己教師あり学習の性能解析を行った。
我々はまた、Noisier2Noiseを使ってSSDUの修正を提案し、その再構築品質と堅牢性を大幅に改善し、高速MRI脳データセットの完全な教師付きトレーニングの1%以内に平均2乗誤差のテストセットを提供する。
関連論文リスト
- Improved Distribution Matching Distillation for Fast Image Synthesis [54.72356560597428]
この制限を解除し、MDDトレーニングを改善する一連の技術であるMDD2を紹介する。
まず、回帰損失と高価なデータセット構築の必要性を排除します。
第2に, GAN損失を蒸留工程に統合し, 生成した試料と実画像との識別を行う。
論文 参考訳(メタデータ) (2024-05-23T17:59:49Z) - SAM-DiffSR: Structure-Modulated Diffusion Model for Image
Super-Resolution [49.205865715776106]
本稿では,SAM-DiffSRモデルを提案する。このモデルでは,ノイズをサンプリングする過程において,SAMからの微細な構造情報を利用することで,推論時に追加の計算コストを伴わずに画像品質を向上させることができる。
DIV2Kデータセット上でPSNRの最大値で既存の拡散法を0.74dB以上越えることにより,提案手法の有効性を実証した。
論文 参考訳(メタデータ) (2024-02-27T01:57:02Z) - Steerable Conditional Diffusion for Out-of-Distribution Adaptation in Medical Image Reconstruction [75.91471250967703]
我々は、ステアブル条件拡散と呼ばれる新しいサンプリングフレームワークを導入する。
このフレームワークは、利用可能な測定によって提供される情報のみに基づいて、画像再構成と並行して拡散モデルを適用する。
様々な画像モダリティにまたがるアウト・オブ・ディストリビューション性能の大幅な向上を実現した。
論文 参考訳(メタデータ) (2023-08-28T08:47:06Z) - Stable Deep MRI Reconstruction using Generative Priors [13.400444194036101]
本稿では,参照等級画像のみを生成的設定でトレーニングした,新しいディープニューラルネットワークベース正規化器を提案する。
その結果,最先端のディープラーニング手法に匹敵する競争性能が示された。
論文 参考訳(メタデータ) (2022-10-25T08:34:29Z) - Self-Score: Self-Supervised Learning on Score-Based Models for MRI
Reconstruction [18.264778497591603]
本稿では,MRI再構成のための完全サンプルデータフリースコアベース拡散モデルを提案する。
アンダーサンプリングされたデータに基づいて、自己監督的な方法で、完全にサンプリングされたMR画像を学ぶ。
公開データセットにおける実験により,提案手法は既存の自己教師型MRI再構成法よりも優れていることが示された。
論文 参考訳(メタデータ) (2022-09-02T06:21:42Z) - PUERT: Probabilistic Under-sampling and Explicable Reconstruction
Network for CS-MRI [47.24613772568027]
圧縮センシングMRI(Compressed Sensing MRI)は,k空間データをサンプリングし,MRI画像の高速化を目的とする。
本稿では,サンプリングパターンと再構成ネットワークを協調的に最適化するために,PUERTと呼ばれる新しいエンドツーエンドの確率的アンダーサンプリングと明示的再構成neTworkを提案する。
2つの広く利用されているMRIデータセットの実験により、提案したPUERTは、定量的な測定値と視覚的品質の両方の観点から、最先端の結果が得られることを示した。
論文 参考訳(メタデータ) (2022-04-24T04:23:57Z) - Conditional Variational Autoencoder for Learned Image Reconstruction [5.487951901731039]
本研究では,未知画像の後部分布を問合せ観測で近似する新しいフレームワークを開発する。
暗黙のノイズモデルと先行処理を処理し、データ生成プロセス(フォワード演算子)を組み込み、学習された再構成特性は異なるデータセット間で転送可能である。
論文 参考訳(メタデータ) (2021-10-22T10:02:48Z) - Learning Energy-Based Models by Diffusion Recovery Likelihood [61.069760183331745]
本稿では,エネルギーベースモデルから気軽に学習・サンプルできる拡散回復可能性法を提案する。
学習後、ガウスの白色雑音分布から初期化するサンプリングプロセスにより合成画像を生成することができる。
非条件 CIFAR-10 では,本手法は FID 9.58 と開始スコア 8.30 を達成する。
論文 参考訳(メタデータ) (2020-12-15T07:09:02Z) - Multi-task MR Imaging with Iterative Teacher Forcing and Re-weighted
Deep Learning [14.62432715967572]
我々は,既存のビッグデータから事前知識を学習するための,マルチタスク深層学習手法を開発した。
次に,これらを用いて,アンダーサンプリングしたk空間データからMR再構成とセグメンテーションを同時支援する。
提案手法は,同時的かつ正確なMR再構成とセグメンテーションの促進機能を有することを示す。
論文 参考訳(メタデータ) (2020-11-27T09:08:05Z) - Modal Regression based Structured Low-rank Matrix Recovery for
Multi-view Learning [70.57193072829288]
近年、低ランクなマルチビューサブスペース学習は、クロスビューの分類において大きな可能性を示している。
既存のLMvSLベースの手法では、ビューの区別と差別を同時に扱うことができない。
本稿では,視差を効果的に除去し,識別性を向上する独自の方法であるStructured Low-rank Matrix Recovery (SLMR)を提案する。
論文 参考訳(メタデータ) (2020-03-22T03:57:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。