Enriched Robust Multi-View Kernel Subspace Clustering
- URL: http://arxiv.org/abs/2205.10495v1
- Date: Sat, 21 May 2022 03:06:24 GMT
- Title: Enriched Robust Multi-View Kernel Subspace Clustering
- Authors: Mengyuan Zhang, Kai Liu
- Abstract summary: Subspace clustering is to find underlying low-dimensional subspaces and cluster the data points correctly.
Most existing methods suffer from two critical issues.
We propose a novel multi-view subspace clustering method.
- Score: 5.770309971945476
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Subspace clustering is to find underlying low-dimensional subspaces and
cluster the data points correctly. In this paper, we propose a novel multi-view
subspace clustering method. Most existing methods suffer from two critical
issues. First, they usually adopt a two-stage framework and isolate the
processes of affinity learning, multi-view information fusion and clustering.
Second, they assume the data lies in a linear subspace which may fail in
practice as most real-world datasets may have non-linearity structures. To
address the above issues, in this paper we propose a novel Enriched Robust
Multi-View Kernel Subspace Clustering framework where the consensus affinity
matrix is learned from both multi-view data and spectral clustering. Due to the
objective and constraints which is difficult to optimize, we propose an
iterative optimization method which is easy to implement and can yield closed
solution in each step. Extensive experiments have validated the superiority of
our method over state-of-the-art clustering methods.
Related papers
- One-Step Late Fusion Multi-view Clustering with Compressed Subspace [29.02032034647922]
We propose an integrated framework named One-Step Late Fusion Multi-view Clustering with Compressed Subspace (OS-LFMVC-CS)
We use the consensus subspace to align the partition matrix while optimizing the partition fusion, and utilize the fused partition matrix to guide the learning of discrete labels.
arXiv Detail & Related papers (2024-01-03T06:18:30Z) - One-step Multi-view Clustering with Diverse Representation [47.41455937479201]
We propose a one-step multi-view clustering with diverse representation method, which incorporates multi-view learning and $k$-means into a unified framework.
We develop an efficient optimization algorithm with proven convergence to solve the resultant problem.
arXiv Detail & Related papers (2023-06-08T02:52:24Z) - Unsupervised Manifold Linearizing and Clustering [19.879641608165887]
We propose to optimize the Maximal Coding Reduction metric with respect to both the data representation and a novel doubly cluster membership.
Experiments on CIFAR-10, -20, -100, and TinyImageNet-200 datasets show that the proposed method is much more accurate and scalable than state-of-the-art deep clustering methods.
arXiv Detail & Related papers (2023-01-04T20:08:23Z) - Adaptively-weighted Integral Space for Fast Multiview Clustering [54.177846260063966]
We propose an Adaptively-weighted Integral Space for Fast Multiview Clustering (AIMC) with nearly linear complexity.
Specifically, view generation models are designed to reconstruct the view observations from the latent integral space.
Experiments conducted on several realworld datasets confirm the superiority of the proposed AIMC method.
arXiv Detail & Related papers (2022-08-25T05:47:39Z) - Late Fusion Multi-view Clustering via Global and Local Alignment
Maximization [61.89218392703043]
Multi-view clustering (MVC) optimally integrates complementary information from different views to improve clustering performance.
Most of existing approaches directly fuse multiple pre-specified similarities to learn an optimal similarity matrix for clustering.
We propose late fusion MVC via alignment to address these issues.
arXiv Detail & Related papers (2022-08-02T01:49:31Z) - Interpretable Clustering via Multi-Polytope Machines [12.69310440882225]
We propose a novel approach for interpretable clustering that both clusters data points and constructs polytopes around the discovered clusters to explain them.
We benchmark our approach on a suite of synthetic and real world clustering problems, where our algorithm outperforms state of the art interpretable and non-interpretable clustering algorithms.
arXiv Detail & Related papers (2021-12-10T16:36:32Z) - Smoothed Multi-View Subspace Clustering [14.77544837600836]
We propose a novel multi-view clustering method named smoothed multi-view subspace clustering (SMVSC)
It employs a novel technique, i.e., graph filtering, to obtain a smooth representation for each view.
Experiments on benchmark datasets validate the superiority of our approach.
arXiv Detail & Related papers (2021-06-18T02:24:19Z) - Scalable Hierarchical Agglomerative Clustering [65.66407726145619]
Existing scalable hierarchical clustering methods sacrifice quality for speed.
We present a scalable, agglomerative method for hierarchical clustering that does not sacrifice quality and scales to billions of data points.
arXiv Detail & Related papers (2020-10-22T15:58:35Z) - Unsupervised Multi-view Clustering by Squeezing Hybrid Knowledge from
Cross View and Each View [68.88732535086338]
This paper proposes a new multi-view clustering method, low-rank subspace multi-view clustering based on adaptive graph regularization.
Experimental results for five widely used multi-view benchmarks show that our proposed algorithm surpasses other state-of-the-art methods by a clear margin.
arXiv Detail & Related papers (2020-08-23T08:25:06Z) - Learnable Subspace Clustering [76.2352740039615]
We develop a learnable subspace clustering paradigm to efficiently solve the large-scale subspace clustering problem.
The key idea is to learn a parametric function to partition the high-dimensional subspaces into their underlying low-dimensional subspaces.
To the best of our knowledge, this paper is the first work to efficiently cluster millions of data points among the subspace clustering methods.
arXiv Detail & Related papers (2020-04-09T12:53:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.