Investigating classification learning curves for automatically generated
and labelled plant images
- URL: http://arxiv.org/abs/2205.10955v2
- Date: Thu, 26 May 2022 16:33:54 GMT
- Title: Investigating classification learning curves for automatically generated
and labelled plant images
- Authors: Michael A. Beck, Christopher P. Bidinosti, Christopher J. Henry,
Manisha Ajmani
- Abstract summary: We present a dataset of plant images with representatives of crops and weeds common to the Manitoba prairies at different growth stages.
We determine the learning curve for a classification task on this data with the ResNet architecture.
We investigate how label noise and the reduction of trainable parameters impacts the learning curve on this dataset.
- Score: 0.1338174941551702
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: In the context of supervised machine learning a learning curve describes how
a model's performance on unseen data relates to the amount of samples used to
train the model. In this paper we present a dataset of plant images with
representatives of crops and weeds common to the Manitoba prairies at different
growth stages. We determine the learning curve for a classification task on
this data with the ResNet architecture. Our results are in accordance with
previous studies and add to the evidence that learning curves are governed by
power-law relationships over large scales, applications, and models. We further
investigate how label noise and the reduction of trainable parameters impacts
the learning curve on this dataset. Both effects lead to the model requiring
disproportionally larger training sets to achieve the same classification
performance as observed without these effects.
Related papers
- Granularity Matters in Long-Tail Learning [62.30734737735273]
We offer a novel perspective on long-tail learning, inspired by an observation: datasets with finer granularity tend to be less affected by data imbalance.
We introduce open-set auxiliary classes that are visually similar to existing ones, aiming to enhance representation learning for both head and tail classes.
To prevent the overwhelming presence of auxiliary classes from disrupting training, we introduce a neighbor-silencing loss.
arXiv Detail & Related papers (2024-10-21T13:06:21Z) - Reinforcing Pre-trained Models Using Counterfactual Images [54.26310919385808]
This paper proposes a novel framework to reinforce classification models using language-guided generated counterfactual images.
We identify model weaknesses by testing the model using the counterfactual image dataset.
We employ the counterfactual images as an augmented dataset to fine-tune and reinforce the classification model.
arXiv Detail & Related papers (2024-06-19T08:07:14Z) - Outlier Gradient Analysis: Efficiently Identifying Detrimental Training Samples for Deep Learning Models [36.05242956018461]
In this paper, we establish a bridge between identifying detrimental training samples via influence functions and outlier gradient detection.
We first validate the hypothesis of our proposed outlier gradient analysis approach on synthetic datasets.
We then demonstrate its effectiveness in detecting mislabeled samples in vision models and selecting data samples for improving performance of natural language processing transformer models.
arXiv Detail & Related papers (2024-05-06T21:34:46Z) - The Importance of Model Inspection for Better Understanding Performance Characteristics of Graph Neural Networks [15.569758991934934]
We investigate the effect of modelling choices on the feature learning characteristics of graph neural networks applied to a brain shape classification task.
We find substantial differences in the feature embeddings at different layers of the models.
arXiv Detail & Related papers (2024-05-02T13:26:18Z) - Strategies and impact of learning curve estimation for CNN-based image
classification [0.2678472239880052]
Learning curves are a measure for how the performance of machine learning models improves given a certain volume of training data.
Over a wide variety of applications and models it was observed that learning curves follow -- to a large extent -- a power law behavior.
By estimating the learning curve of a model from training on small subsets of data only the best models need to be considered for training on the full dataset.
arXiv Detail & Related papers (2023-10-12T16:28:25Z) - Leaving Reality to Imagination: Robust Classification via Generated
Datasets [24.411444438920988]
Recent research on robustness has revealed significant performance gaps between neural image classifiers trained on datasets similar to the test set.
We study the question: How do generated datasets influence the natural robustness of image classifiers?
We find that Imagenet classifiers trained on real data augmented with generated data achieve higher accuracy and effective robustness than standard training.
arXiv Detail & Related papers (2023-02-05T22:49:33Z) - CHALLENGER: Training with Attribution Maps [63.736435657236505]
We show that utilizing attribution maps for training neural networks can improve regularization of models and thus increase performance.
In particular, we show that our generic domain-independent approach yields state-of-the-art results in vision, natural language processing and on time series tasks.
arXiv Detail & Related papers (2022-05-30T13:34:46Z) - An Empirical Investigation of Commonsense Self-Supervision with
Knowledge Graphs [67.23285413610243]
Self-supervision based on the information extracted from large knowledge graphs has been shown to improve the generalization of language models.
We study the effect of knowledge sampling strategies and sizes that can be used to generate synthetic data for adapting language models.
arXiv Detail & Related papers (2022-05-21T19:49:04Z) - Towards Open-World Feature Extrapolation: An Inductive Graph Learning
Approach [80.8446673089281]
We propose a new learning paradigm with graph representation and learning.
Our framework contains two modules: 1) a backbone network (e.g., feedforward neural nets) as a lower model takes features as input and outputs predicted labels; 2) a graph neural network as an upper model learns to extrapolate embeddings for new features via message passing over a feature-data graph built from observed data.
arXiv Detail & Related papers (2021-10-09T09:02:45Z) - Automatic Recall Machines: Internal Replay, Continual Learning and the
Brain [104.38824285741248]
Replay in neural networks involves training on sequential data with memorized samples, which counteracts forgetting of previous behavior caused by non-stationarity.
We present a method where these auxiliary samples are generated on the fly, given only the model that is being trained for the assessed objective.
Instead the implicit memory of learned samples within the assessed model itself is exploited.
arXiv Detail & Related papers (2020-06-22T15:07:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.