Strategies and impact of learning curve estimation for CNN-based image
classification
- URL: http://arxiv.org/abs/2310.08470v1
- Date: Thu, 12 Oct 2023 16:28:25 GMT
- Title: Strategies and impact of learning curve estimation for CNN-based image
classification
- Authors: Laura Didyk, Brayden Yarish, Michael A. Beck, Christopher P.
Bidinosti, Christopher J. Henry
- Abstract summary: Learning curves are a measure for how the performance of machine learning models improves given a certain volume of training data.
Over a wide variety of applications and models it was observed that learning curves follow -- to a large extent -- a power law behavior.
By estimating the learning curve of a model from training on small subsets of data only the best models need to be considered for training on the full dataset.
- Score: 0.2678472239880052
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Learning curves are a measure for how the performance of machine learning
models improves given a certain volume of training data. Over a wide variety of
applications and models it was observed that learning curves follow -- to a
large extent -- a power law behavior. This makes the performance of different
models for a given task somewhat predictable and opens the opportunity to
reduce the training time for practitioners, who are exploring the space of
possible models and hyperparameters for the problem at hand. By estimating the
learning curve of a model from training on small subsets of data only the best
models need to be considered for training on the full dataset. How to choose
subset sizes and how often to sample models on these to obtain estimates is
however not researched. Given that the goal is to reduce overall training time
strategies are needed that sample the performance in a time-efficient way and
yet leads to accurate learning curve estimates. In this paper we formulate the
framework for these strategies and propose several strategies. Further we
evaluate the strategies for simulated learning curves and in experiments with
popular datasets and models for image classification tasks.
Related papers
- Accelerating Deep Learning with Fixed Time Budget [2.190627491782159]
This paper proposes an effective technique for training arbitrary deep learning models within fixed time constraints.
The proposed method is extensively evaluated in both classification and regression tasks in computer vision.
arXiv Detail & Related papers (2024-10-03T21:18:04Z) - Learning Augmentation Policies from A Model Zoo for Time Series Forecasting [58.66211334969299]
We introduce AutoTSAug, a learnable data augmentation method based on reinforcement learning.
By augmenting the marginal samples with a learnable policy, AutoTSAug substantially improves forecasting performance.
arXiv Detail & Related papers (2024-09-10T07:34:19Z) - Distilled Datamodel with Reverse Gradient Matching [74.75248610868685]
We introduce an efficient framework for assessing data impact, comprising offline training and online evaluation stages.
Our proposed method achieves comparable model behavior evaluation while significantly speeding up the process compared to the direct retraining method.
arXiv Detail & Related papers (2024-04-22T09:16:14Z) - Learn to Unlearn for Deep Neural Networks: Minimizing Unlearning
Interference with Gradient Projection [56.292071534857946]
Recent data-privacy laws have sparked interest in machine unlearning.
Challenge is to discard information about the forget'' data without altering knowledge about remaining dataset.
We adopt a projected-gradient based learning method, named as Projected-Gradient Unlearning (PGU)
We provide empirically evidence to demonstrate that our unlearning method can produce models that behave similar to models retrained from scratch across various metrics even when the training dataset is no longer accessible.
arXiv Detail & Related papers (2023-12-07T07:17:24Z) - An Analysis of Initial Training Strategies for Exemplar-Free
Class-Incremental Learning [36.619804184427245]
Class-Incremental Learning (CIL) aims to build classification models from data streams.
Due to catastrophic forgetting, CIL is particularly challenging when examples from past classes cannot be stored.
Use of models pre-trained in a self-supervised way on large amounts of data has recently gained momentum.
arXiv Detail & Related papers (2023-08-22T14:06:40Z) - TRAK: Attributing Model Behavior at Scale [79.56020040993947]
We present TRAK (Tracing with Randomly-trained After Kernel), a data attribution method that is both effective and computationally tractable for large-scale, differenti models.
arXiv Detail & Related papers (2023-03-24T17:56:22Z) - Frugal Reinforcement-based Active Learning [12.18340575383456]
We propose a novel active learning approach for label-efficient training.
The proposed method is iterative and aims at minimizing a constrained objective function that mixes diversity, representativity and uncertainty criteria.
We also introduce a novel weighting mechanism based on reinforcement learning, which adaptively balances these criteria at each training iteration.
arXiv Detail & Related papers (2022-12-09T14:17:45Z) - Models, Pixels, and Rewards: Evaluating Design Trade-offs in Visual
Model-Based Reinforcement Learning [109.74041512359476]
We study a number of design decisions for the predictive model in visual MBRL algorithms.
We find that a range of design decisions that are often considered crucial, such as the use of latent spaces, have little effect on task performance.
We show how this phenomenon is related to exploration and how some of the lower-scoring models on standard benchmarks will perform the same as the best-performing models when trained on the same training data.
arXiv Detail & Related papers (2020-12-08T18:03:21Z) - Dynamic Data Selection for Curriculum Learning via Ability Estimation [6.255759848576057]
We propose replacing difficultys with learned difficulty parameters.
We also propose Dynamic selection for Curriculum Learning via Ability Estimation.
We show that models using learned difficulty and/or ability outperform data-based curriculum learning models on the GLUE classification tasks.
arXiv Detail & Related papers (2020-10-30T20:01:56Z) - Model-specific Data Subsampling with Influence Functions [37.64859614131316]
We develop a model-specific data subsampling strategy that improves over random sampling whenever training points have varying influence.
Specifically, we leverage influence functions to guide our selection strategy, proving theoretically, and demonstrating empirically that our approach quickly selects high-quality models.
arXiv Detail & Related papers (2020-10-20T12:10:28Z) - Few-shot Classification via Adaptive Attention [93.06105498633492]
We propose a novel few-shot learning method via optimizing and fast adapting the query sample representation based on very few reference samples.
As demonstrated experimentally, the proposed model achieves state-of-the-art classification results on various benchmark few-shot classification and fine-grained recognition datasets.
arXiv Detail & Related papers (2020-08-06T05:52:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.