論文の概要: Global Extreme Heat Forecasting Using Neural Weather Models
- arxiv url: http://arxiv.org/abs/2205.10972v1
- Date: Mon, 23 May 2022 00:35:23 GMT
- ステータス: 処理完了
- システム内更新日: 2022-05-24 19:45:06.932604
- Title: Global Extreme Heat Forecasting Using Neural Weather Models
- Title(参考訳): ニューラルウェザーモデルを用いたグローバル極熱予測
- Authors: Ignacio Lopez-Gomez, Amy McGovern, Shreya Agrawal, Jason Hickey
- Abstract要約: 熱波は地球温暖化に伴う頻度と重症度の増加を予測している。
本研究では,過去データに基づいて学習した深層学習システムが,短・中・下季節の時間スケールで極端な熱を予測できる可能性を探る。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Heat waves are projected to increase in frequency and severity with global
warming. Improved warning systems would help reduce the associated loss of
lives, wildfires, power disruptions, and reduction in crop yields. In this
work, we explore the potential for deep learning systems trained on historical
data to forecast extreme heat on short, medium and subseasonal timescales. To
this purpose, we train a set of neural weather models (NWMs) with convolutional
architectures to forecast surface temperature anomalies globally, 1 to 28 days
ahead, at $\sim200~\mathrm{km}$ resolution and on the cubed sphere. The NWMs
are trained using the ERA5 reanalysis product and a set of candidate loss
functions, including the mean squared error and exponential losses targeting
extremes. We find that training models to minimize custom losses tailored to
emphasize extremes leads to significant skill improvements in the heat wave
prediction task, compared to NWMs trained on the mean squared error loss. This
improvement is accomplished with almost no skill reduction in the general
temperature prediction task, and it can be efficiently realized through
transfer learning, by re-training NWMs with the custom losses for a few epochs.
In addition, we find that the use of a symmetric exponential loss reduces the
smoothing of NWM forecasts with lead time. Our best NWM is able to outperform
persistence in a regressive sense for all lead times and temperature anomaly
thresholds considered, and shows positive regressive skill compared to the
ECMWF subseasonal-to-seasonal control forecast within the first two forecast
days and after two weeks.
- Abstract(参考訳): 熱波は温暖化に伴う頻度と深刻度の増加を想定している。
警告システムの改善は、生命の喪失、山火事、停電、収穫量の減少に寄与する。
本研究では,過去データに基づいて学習した深層学習システムが,短・中・下季節の時間スケールで極端な熱を予測できる可能性を探る。
この目的のために、畳み込みアーキテクチャを備えた一連のニューラルウェザーモデル(nwms)を訓練し、1日から28日前、解像度$\sim200~\mathrm{km}$および立方体球面上の表面温度異常を予測する。
NWMは、ERA5再分析製品と、平均二乗誤差や極端を対象とする指数的損失を含む一連の候補損失関数を用いて訓練される。
極度に強調するために調整されたカスタム損失を最小限に抑えるトレーニングモデルは,平均二乗誤差損失をトレーニングしたNWMと比較して,熱波予測タスクの大幅な技術向上につながることがわかった。
この改善は、一般的な温度予測タスクのスキルをほとんど減らさずに達成でき、数エポックのカスタムロスでnwmsをリトレーニングすることで、転送学習により効率的に実現することができる。
さらに,対称指数損失を用いることで,鉛時間によるNWM予測の平滑化が抑制されることがわかった。
最良なNWMは,すべてのリード時間および温度異常閾値を考慮した回帰感覚の持続性に優れ,最初の2日間および2週間後のECMWFサブシーズン・シーズン制御予測と比較して,正の回帰能力を示す。
関連論文リスト
- Advancing Heatwave Forecasting via Distribution Informed-Graph Neural Networks (DI-GNNs): Integrating Extreme Value Theory with GNNs [3.1648929705158357]
極端な熱の長い期間である熱波は、気候変動による頻度と重大さを増している。
気象スケール(1~15日)での正確な熱波予測は、大気中のドライバ間の非線形相互作用と、これらの極端な事象の希少性により、依然として困難である。
本研究では、極値理論(EVT)の原理をグラフニューラルネットワークアーキテクチャに統合する新しいフレームワークであるDis Distribution-Informed Graph Neural Network (DI-GNN)を紹介する。
論文 参考訳(メタデータ) (2024-11-20T17:45:03Z) - A non-intrusive machine learning framework for debiasing long-time
coarse resolution climate simulations and quantifying rare events statistics [0.0]
粗いモデルは、無視された「サブグリッド」スケールのために固有のバイアスに悩まされる。
ニューラルネット(NN)補正演算子を用いて,非侵襲的に粗大分解能気候予測を行うフレームワークを提案する。
論文 参考訳(メタデータ) (2024-02-28T17:06:19Z) - ExtremeCast: Boosting Extreme Value Prediction for Global Weather Forecast [57.6987191099507]
非対称な最適化を行い、極端な天気予報を得るために極端な値を強調する新しい損失関数であるExlossを導入する。
また,複数のランダムサンプルを用いて予測結果の不確かさをキャプチャするExBoosterについても紹介する。
提案手法は,上位中距離予測モデルに匹敵する全体的な予測精度を維持しつつ,極端気象予測における最先端性能を達成することができる。
論文 参考訳(メタデータ) (2024-02-02T10:34:13Z) - Kunyu: A High-Performing Global Weather Model Beyond Regression Losses [0.0]
大気変数の包括的配列を0.35デグ分解能で正確に予測する,グローバルなデータ駆動型天気予報モデルであるKunyuについて紹介する。
トレーニングフレームワークにレグレッションと敵の損失が組み込まれ、クンユは明快さとリアリズムを増した予測を生成する。
論文 参考訳(メタデータ) (2023-12-04T17:30:41Z) - Temperature Balancing, Layer-wise Weight Analysis, and Neural Network
Training [58.20089993899729]
本稿では,直感的で効果的な階層学習手法であるTempBalanceを提案する。
我々は、TempBalanceが通常のSGDと注意深く調整されたスペクトルノルム正規化より著しく優れていることを示す。
また、TempBalanceは最先端のメトリクスやスケジューラよりも優れています。
論文 参考訳(メタデータ) (2023-12-01T05:38:17Z) - Pangu-Weather: A 3D High-Resolution Model for Fast and Accurate Global
Weather Forecast [91.9372563527801]
我々は,世界天気予報を迅速かつ高精度に予測するためのディープラーニングベースのシステムであるPangu-Weatherを紹介する。
初めてAIベースの手法が、最先端の数値天気予報法(NWP)を精度で上回った。
Pangu-Weatherは、極端な天気予報や大規模なアンサンブル予測など、幅広い下流予測シナリオをサポートしている。
論文 参考訳(メタデータ) (2022-11-03T17:19:43Z) - Forecasting large-scale circulation regimes using deformable
convolutional neural networks and global spatiotemporal climate data [86.1450118623908]
変形可能な畳み込みニューラルネットワーク(deCNN)に基づく教師あり機械学習手法の検討
今後1~15日にわたって北大西洋-欧州の気象条件を予測した。
より広い視野で見れば、通常の畳み込みニューラルネットワークよりも5~6日を超えるリードタイムでかなり優れた性能を発揮することが分かる。
論文 参考訳(メタデータ) (2022-02-10T11:37:00Z) - Addressing Deep Learning Model Uncertainty in Long-Range Climate
Forecasting with Late Fusion [2.951502707659703]
本稿では,複数のモデルからの予測を体系的に組み合わせて,融合した結果の予測誤差を低減できるレイトフュージョン手法を提案する。
また、データ正規化を実際に行わずにデータ正規化の利点を得るために、新しい非正規化層を持つネットワークアーキテクチャを提案する。
長距離2m温度予測実験の結果,30年間の気候の正常値を上回っ,モデル数の増加により精度の向上が図られた。
論文 参考訳(メタデータ) (2021-12-10T00:00:09Z) - Predicting Training Time Without Training [120.92623395389255]
我々は、事前訓練された深層ネットワークが損失関数の所定の値に収束する必要がある最適化ステップの数を予測する問題に取り組む。
我々は、微調整中の深部ネットワークのトレーニングダイナミクスが線形化モデルによってよく近似されているという事実を活用する。
トレーニングをする必要なく、特定の損失にモデルを微調整するのに要する時間を予測できます。
論文 参考訳(メタデータ) (2020-08-28T04:29:54Z) - A generative adversarial network approach to (ensemble) weather
prediction [91.3755431537592]
本研究では,500hPaの圧力レベル,2m温度,24時間の総降水量を予測するために,条件付き深部畳み込み生成対向ネットワークを用いた。
提案されたモデルは、2019年に関連する気象分野を予測することを目的として、2015年から2018年までの4年間のERA5の再分析データに基づいて訓練されている。
論文 参考訳(メタデータ) (2020-06-13T20:53:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。