論文の概要: Exploring the stimulative effect on following drivers in a consecutive
lane-change using microscopic vehicle trajectory data
- arxiv url: http://arxiv.org/abs/2205.11252v1
- Date: Wed, 18 May 2022 20:56:42 GMT
- ステータス: 処理完了
- システム内更新日: 2022-05-29 20:41:27.324939
- Title: Exploring the stimulative effect on following drivers in a consecutive
lane-change using microscopic vehicle trajectory data
- Title(参考訳): 微視的車両軌跡データを用いた連続車線変更時の追従者に対する刺激効果の検討
- Authors: Ruifeng Gu
- Abstract要約: 不適切な車線変動は、交通の流れの崩壊と様々な種類の衝突の発生をもたらす可能性がある。
本研究では,複数車両の車線変更挙動と連続車線変更シナリオにおける後続車線に対する刺激効果について検討した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Improper lane-changing behaviors may result in breakdown of traffic flow and
the occurrence of various types of collisions. This study investigates
lane-changing behaviors of multiple vehicles and the stimulative effect on
following drivers in a consecutive lane-changing scenario. The microscopic
trajectory data from the dataset are used for driving behavior analysis.Two
discretionary lane-changing vehicle groups constitute a consecutive
lane-changing scenario, and not only distance- and speed-related factors but
also driving behaviors are taken into account to examine the impacts on the
utility of following lane-changing vehicles.A random parameters logit model is
developed to capture the driver psychological heterogeneity in the consecutive
lane-changing situation.Furthermore, a lane-changing utility prediction model
is established based on three supervised learning algorithms to detect the
improper lane-changing decision. Results indicate that (1) the consecutive
lane-changing behaviors have a significant negative effect on the following
lane-changing vehicles after lane-change; (2) the stimulative effect exists in
a consecutive lane-change situation and its influence is heterogeneous due to
different psychological activities of drivers; and (3) the utility prediction
model can be used to detect an improper lane-changing decision.
- Abstract(参考訳): 不適切な車線変更行動は、交通流の崩壊と様々な種類の衝突を引き起こす可能性がある。
本研究では,複数車両の車線変更行動と,連続する車線変更シナリオにおける追従者に対する刺激効果について検討する。
The microscopic trajectory data from the dataset are used for driving behavior analysis.Two discretionary lane-changing vehicle groups constitute a consecutive lane-changing scenario, and not only distance- and speed-related factors but also driving behaviors are taken into account to examine the impacts on the utility of following lane-changing vehicles.A random parameters logit model is developed to capture the driver psychological heterogeneity in the consecutive lane-changing situation.Furthermore, a lane-changing utility prediction model is established based on three supervised learning algorithms to detect the improper lane-changing decision.
その結果,(1)車線変更後の車線変更行動は,車線変更後の車線変更車両に有意な悪影響を及ぼし,(2)連続する車線変更状況において刺激効果が存在し,その影響はドライバの心理的活動によって異様であり,(3)不適切な車線変更判断の検出には有用性予測モデルが有効であることが示された。
関連論文リスト
- Monocular Lane Detection Based on Deep Learning: A Survey [51.19079381823076]
車線検出は自律運転認識システムにおいて重要な役割を果たす。
ディープラーニングアルゴリズムが普及するにつれて、ディープラーニングに基づく単眼車線検出手法が優れた性能を示した。
本稿では, 成熟度の高い2次元車線検出手法と開発途上国の3次元車線検出技術の両方を網羅して, 既存手法の概要を概説する。
論文 参考訳(メタデータ) (2024-11-25T12:09:43Z) - DriveCoT: Integrating Chain-of-Thought Reasoning with End-to-End Driving [81.04174379726251]
本稿では,DriveCoTというエンド・ツー・エンドの運転データセットを総合的に収集する。
センサーデータ、制御決定、および推論プロセスを示すチェーン・オブ・シークレット・ラベルが含まれている。
我々は,私たちのデータセットに基づいてトレーニングされたDriveCoT-Agentと呼ばれるベースラインモデルを提案し,連鎖予測と最終決定を生成する。
論文 参考訳(メタデータ) (2024-03-25T17:59:01Z) - Identification of Driving Heterogeneity using Action-chains [3.596647660010906]
本研究では,アクションチェーンの観点から異種運転を識別するための包括的フレームワークを紹介する。
運転行動の物理的意味を考慮したルールベースセグメンテーション手法を提案する。
次に、セグメント化結果に基づいて、様々な駆動動作パターンの記述を含むアクションフェーズライブラリを作成する。
論文 参考訳(メタデータ) (2023-07-31T17:04:39Z) - Studying the Impact of Semi-Cooperative Drivers on Overall Highway Flow [76.38515853201116]
半協調行動は、人間ドライバーの本質的な性質であり、自律運転には考慮すべきである。
新たな自律型プランナーは、社会的に準拠した軌道を生成するために、人間のドライバーの社会的価値指向(SVO)を考慮することができる。
エージェントが反復的最適応答のゲーム理論バージョンをデプロイする暗黙的な半協調運転について検討する。
論文 参考訳(メタデータ) (2023-04-23T16:01:36Z) - Decision Making for Autonomous Driving in Interactive Merge Scenarios
via Learning-based Prediction [39.48631437946568]
本稿では,他のドライバの動作から不確実性が生ずる移動トラフィックにマージする複雑なタスクに焦点を当てる。
我々はこの問題を部分的に観測可能なマルコフ決定プロセス(POMDP)とみなし、モンテカルロ木探索でオンラインに解決する。
POMDPの解決策は、接近する車に道を譲る、前方の車から安全な距離を維持する、あるいは交通に合流するといった、高いレベルの運転操作を行う政策である。
論文 参考訳(メタデータ) (2023-03-29T16:12:45Z) - RONELDv2: A faster, improved lane tracking method [1.3965477771846408]
車線検出は、自動運転車や車線出発警報システムにおいて、制御システムの不可欠な部分である。
本稿では,改良された軽量車線検出手法 RONELDv2を提案する。
提案した改良モデルを用いた実験では、異なるデータセットとディープラーニングモデル間でレーン検出精度が一貫した向上を示した。
論文 参考訳(メタデータ) (2022-02-26T13:12:09Z) - The Atlas of Lane Changes: Investigating Location-dependent Lane Change
Behaviors Using Measurement Data from a Customer Fleet [4.055489363682199]
我々は、位置特異的なa-プリオリレーン変化確率を計算することによって、この共通プラクティスを拡大する第一歩を踏み出す。
人間の運転行動は、それぞれの場所によって全く同じ交通状況で変化する可能性がある。
信頼できる車線変更確率を導出するためには、広い顧客層が成功の鍵となる。
論文 参考訳(メタデータ) (2021-06-23T07:29:19Z) - End-to-End Intersection Handling using Multi-Agent Deep Reinforcement
Learning [63.56464608571663]
交差点をナビゲートすることは、自動運転車にとって大きな課題の1つです。
本研究では,交通標識のみが提供された交差点をナビゲート可能なシステムの実装に着目する。
本研究では,時間ステップ毎に加速度と操舵角を予測するためのニューラルネットワークの訓練に用いる,モデルフリーの連続学習アルゴリズムを用いたマルチエージェントシステムを提案する。
論文 参考訳(メタデータ) (2021-04-28T07:54:40Z) - Multi-Modal Fusion Transformer for End-to-End Autonomous Driving [59.60483620730437]
画像表現とLiDAR表現を注目で統合する,新しいマルチモードフュージョントランスフォーマであるTransFuserを提案する。
本手法は, 衝突を76%低減しつつ, 最先端駆動性能を実現する。
論文 参考訳(メタデータ) (2021-04-19T11:48:13Z) - A Lane-Changing Prediction Method Based on Temporal Convolution Network [36.84793673877468]
車線変更は重要な運転行動であり、不合理な車線変更は潜在的に危険な交通衝突を引き起こす可能性がある。
本研究では, 経時的畳み込みネットワーク(TCN)を提案する。
論文 参考訳(メタデータ) (2020-11-01T07:33:10Z) - Driver Intention Anticipation Based on In-Cabin and Driving Scene
Monitoring [52.557003792696484]
本稿では,車内映像と交通シーン映像の両方に基づいて運転者の意図を検出する枠組みを提案する。
本フレームワークは,83.98%,F1スコア84.3%の精度で予測を行う。
論文 参考訳(メタデータ) (2020-06-20T11:56:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。