Deep-learning-based prediction of nanoparticle phase transitions during
in situ transmission electron microscopy
- URL: http://arxiv.org/abs/2205.11407v1
- Date: Mon, 23 May 2022 15:50:24 GMT
- Title: Deep-learning-based prediction of nanoparticle phase transitions during
in situ transmission electron microscopy
- Authors: Wenkai Fu, Steven R. Spurgeon, Chongmin Wang, Yuyan Shao, Wei Wang,
Amra Peles
- Abstract summary: We train deep learning models to predict a sequence of future video frames based on the input of a sequence of previous frames.
This capability provides insight into size dependent structural changes in Au nanoparticles under dynamic reaction condition.
It may be possible to anticipate the next steps of a chemical reaction for emerging automated experimentation platforms.
- Score: 3.613625739845355
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We develop the machine learning capability to predict a time sequence of
in-situ transmission electron microscopy (TEM) video frames based on the
combined long-short-term-memory (LSTM) algorithm and the features
de-entanglement method. We train deep learning models to predict a sequence of
future video frames based on the input of a sequence of previous frames. This
unique capability provides insight into size dependent structural changes in Au
nanoparticles under dynamic reaction condition using in-situ environmental TEM
data, informing models of morphological evolution and catalytic properties. The
model performance and achieved accuracy of predictions are desirable based on,
for scientific data characteristic, based on limited size of training data
sets. The model convergence and values for the loss function mean square error
show dependence on the training strategy, and structural similarity measure
between predicted structure images and ground truth reaches the value of about
0.7. This computed structural similarity is smaller than values obtained when
the deep learning architecture is trained using much larger benchmark data
sets, it is sufficient to show the structural transition of Au nanoparticles.
While performance parameters of our model applied to scientific data fall short
of those achieved for the non-scientific big data sets, we demonstrate model
ability to predict the evolution, even including the particle structural phase
transformation, of Au nano particles as catalyst for CO oxidation under the
chemical reaction conditions. Using this approach, it may be possible to
anticipate the next steps of a chemical reaction for emerging automated
experimentation platforms.
Related papers
- Pre-trained Molecular Language Models with Random Functional Group Masking [54.900360309677794]
We propose a SMILES-based underlineem Molecular underlineem Language underlineem Model, which randomly masking SMILES subsequences corresponding to specific molecular atoms.
This technique aims to compel the model to better infer molecular structures and properties, thus enhancing its predictive capabilities.
arXiv Detail & Related papers (2024-11-03T01:56:15Z) - Learning to Simulate Aerosol Dynamics with Graph Neural Networks [3.3827383663816364]
Aerosol effects on climate, weather, and air quality depend on characteristics of individual particles, which are tremendously diverse and change in time.
Particle-resolved models are the only models able to capture this diversity in particle physiochemical properties, and these models are computationally expensive.
We introduce Graph-based Learning of Aerosol Dynamics (GLAD) and use this model to train a surrogate of the particle-resolved model PartMC-MOSAIC.
Results demonstrate the framework's ability to accurately learn chemical dynamics and generalize across different scenarios, achieving efficient training and prediction times.
arXiv Detail & Related papers (2024-09-20T19:21:43Z) - Benchmark on Drug Target Interaction Modeling from a Structure Perspective [48.60648369785105]
Drug-target interaction prediction is crucial to drug discovery and design.
Recent methods, such as those based on graph neural networks (GNNs) and Transformers, demonstrate exceptional performance across various datasets.
We conduct a comprehensive survey and benchmark for drug-target interaction modeling from a structure perspective, via integrating tens of explicit (i.e., GNN-based) and implicit (i.e., Transformer-based) structure learning algorithms.
arXiv Detail & Related papers (2024-07-04T16:56:59Z) - A Three-regime Model of Network Pruning [47.92525418773768]
We use temperature-like and load-like parameters to model the impact of neural network (NN) training hyper parameters on pruning performance.
A key empirical result we identify is a sharp transition phenomenon: depending on the value of a load-like parameter in the pruned model, increasing the value of a temperature-like parameter in the pre-pruned model may either enhance or impair subsequent pruning performance.
Our model reveals that the dichotomous effect of high temperature is associated with transitions between distinct types of global structures in the post-pruned model.
arXiv Detail & Related papers (2023-05-28T08:09:25Z) - Interpretable Joint Event-Particle Reconstruction for Neutrino Physics
at NOvA with Sparse CNNs and Transformers [124.29621071934693]
We present a novel neural network architecture that combines the spatial learning enabled by convolutions with the contextual learning enabled by attention.
TransformerCVN simultaneously classifies each event and reconstructs every individual particle's identity.
This architecture enables us to perform several interpretability studies which provide insights into the network's predictions.
arXiv Detail & Related papers (2023-03-10T20:36:23Z) - Dynamic Molecular Graph-based Implementation for Biophysical Properties
Prediction [9.112532782451233]
We propose a novel approach based on the transformer model utilizing GNNs for characterizing dynamic features of protein-ligand interactions.
Our message passing transformer pre-trains on a set of molecular dynamic data based off of physics-based simulations to learn coordinate construction and make binding probability and affinity predictions.
arXiv Detail & Related papers (2022-12-20T04:21:19Z) - Generative structured normalizing flow Gaussian processes applied to
spectroscopic data [4.0773490083614075]
In the physical sciences, limited training data may not adequately characterize future observed data.
It is critical that models adequately indicate uncertainty, particularly when they may be asked to extrapolate.
We demonstrate the methodology on laser-induced breakdown spectroscopy data from the ChemCam instrument onboard the Mars rover Curiosity.
arXiv Detail & Related papers (2022-12-14T23:57:46Z) - Neural network enhanced measurement efficiency for molecular
groundstates [63.36515347329037]
We adapt common neural network models to learn complex groundstate wavefunctions for several molecular qubit Hamiltonians.
We find that using a neural network model provides a robust improvement over using single-copy measurement outcomes alone to reconstruct observables.
arXiv Detail & Related papers (2022-06-30T17:45:05Z) - A Physics-Guided Neural Operator Learning Approach to Model Biological
Tissues from Digital Image Correlation Measurements [3.65211252467094]
We present a data-driven correlation to biological tissue modeling, which aims to predict the displacement field based on digital image correlation (DIC) measurements under unseen loading scenarios.
A material database is constructed from the DIC displacement tracking measurements of multiple biaxial stretching protocols on a porcine tricuspid valve leaflet.
The material response is modeled as a solution operator from the loading to the resultant displacement field, with the material properties learned implicitly from the data and naturally embedded in the network parameters.
arXiv Detail & Related papers (2022-04-01T04:56:41Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
We propose a probabilistic model called ME-NODE to incorporate (fixed + random) mixed effects for analyzing panel data.
We show that our model can be derived using smooth approximations of SDEs provided by the Wong-Zakai theorem.
We then derive Evidence Based Lower Bounds for ME-NODE, and develop (efficient) training algorithms.
arXiv Detail & Related papers (2022-02-18T22:41:51Z) - Embedded-physics machine learning for coarse-graining and collective
variable discovery without data [3.222802562733787]
We present a novel learning framework that consistently embeds underlying physics.
We propose a novel objective based on reverse Kullback-Leibler divergence that fully incorporates the available physics in the form of the atomistic force field.
We demonstrate the algorithmic advances in terms of predictive ability and the physical meaning of the revealed CVs for a bimodal potential energy function and the alanine dipeptide.
arXiv Detail & Related papers (2020-02-24T10:28:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.