evoxels: A differentiable physics framework for voxel-based microstructure simulations
- URL: http://arxiv.org/abs/2507.21748v1
- Date: Tue, 29 Jul 2025 12:29:15 GMT
- Title: evoxels: A differentiable physics framework for voxel-based microstructure simulations
- Authors: Simon Daubner, Alexander E. Cohen, Benjamin Dörich, Samuel J. Cooper,
- Abstract summary: Differentiable physics framework evoxels is based on a fully Pythonic, unified voxel-based approach that integrates segmented 3D microscopy data, physical simulations, inverse modeling, and machine learning.
- Score: 41.94295877935867
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Materials science inherently spans disciplines: experimentalists use advanced microscopy to uncover micro- and nanoscale structure, while theorists and computational scientists develop models that link processing, structure, and properties. Bridging these domains is essential for inverse material design where you start from desired performance and work backwards to optimal microstructures and manufacturing routes. Integrating high-resolution imaging with predictive simulations and data-driven optimization accelerates discovery and deepens understanding of process-structure-property relationships. The differentiable physics framework evoxels is based on a fully Pythonic, unified voxel-based approach that integrates segmented 3D microscopy data, physical simulations, inverse modeling, and machine learning.
Related papers
- Deep Learning-Driven Prediction of Microstructure Evolution via Latent Space Interpolation [0.0]
Phase-field models accurately simulate microstructure evolution, but their dependence on solving complex differential equations makes them computationally expensive.<n>This work achieves a significant acceleration via a novel deep learning-based framework, utilizing a Variational Autoencoder (CVAE) coupled with Cubic Spline Interpolation and Spherical Linear Interpolation (SLERP)<n>We demonstrate the method for binary spinodal decomposition by predicting microstructure evolution for intermediate alloy compositions from a limited set of training compositions.
arXiv Detail & Related papers (2025-08-03T16:22:15Z) - Deep learning-aided inverse design of porous metamaterials [0.0]
The ultimate aim of the study is to explore the inverse design of porous metamaterials using a deep learning-based generative framework.<n>We develop a property-variational autoencoder (pVAE), a variational autoencoder (VAE) augmented with a regressor, to generate structured metamaterials with tailored hydraulic properties.
arXiv Detail & Related papers (2025-07-23T20:07:53Z) - Statistical learning of structure-property relationships for transport in porous media, using hybrid AI modeling [0.0]
The 3D microstructure of porous media significantly impacts the resulting macroscopic properties, including effective diffusivity or permeability.<n> quantitative structure-property relationships are crucial for further optimizing the performance of porous media.<n>The present paper uses 90,000 virtually generated 3D microstructures of porous media derived from literature.<n>The paper extends these findings by applying a hybrid AI framework to this data set.
arXiv Detail & Related papers (2025-03-27T14:46:40Z) - Causal Discovery from Data Assisted by Large Language Models [50.193740129296245]
It is essential to integrate experimental data with prior domain knowledge for knowledge driven discovery.<n>Here we demonstrate this approach by combining high-resolution scanning transmission electron microscopy (STEM) data with insights derived from large language models (LLMs)<n>By fine-tuning ChatGPT on domain-specific literature, we construct adjacency matrices for Directed Acyclic Graphs (DAGs) that map the causal relationships between structural, chemical, and polarization degrees of freedom in Sm-doped BiFeO3 (SmBFO)
arXiv Detail & Related papers (2025-03-18T02:14:49Z) - GausSim: Foreseeing Reality by Gaussian Simulator for Elastic Objects [55.02281855589641]
GausSim is a novel neural network-based simulator designed to capture the dynamic behaviors of real-world elastic objects represented through Gaussian kernels.<n>We leverage continuum mechanics and treat each kernel as a Center of Mass System (CMS) that represents continuous piece of matter.<n>In addition, GausSim incorporates explicit physics constraints, such as mass and momentum conservation, ensuring interpretable results and robust, physically plausible simulations.
arXiv Detail & Related papers (2024-12-23T18:58:17Z) - Cliqueformer: Model-Based Optimization with Structured Transformers [102.55764949282906]
Large neural networks excel at prediction tasks, but their application to design problems, such as protein engineering or materials discovery, requires solving offline model-based optimization (MBO) problems.<n>We present Cliqueformer, a transformer-based architecture that learns the black-box function's structure through functional graphical models (FGM)<n>Across various domains, including chemical and genetic design tasks, Cliqueformer demonstrates superior performance compared to existing methods.
arXiv Detail & Related papers (2024-10-17T00:35:47Z) - DiffuseBot: Breeding Soft Robots With Physics-Augmented Generative
Diffusion Models [102.13968267347553]
We present DiffuseBot, a physics-augmented diffusion model that generates soft robot morphologies capable of excelling in a wide spectrum of tasks.
We showcase a range of simulated and fabricated robots along with their capabilities.
arXiv Detail & Related papers (2023-11-28T18:58:48Z) - A robust synthetic data generation framework for machine learning in
High-Resolution Transmission Electron Microscopy (HRTEM) [1.0923877073891446]
Construction Zone is a Python package for rapidly generating complex nanoscale atomic structures.
We develop an end-to-end workflow for creating large simulated databases for training neural networks.
Using our results, we are able to achieve state-of-the-art segmentation performance on experimental HRTEM images of nanoparticles.
arXiv Detail & Related papers (2023-09-12T10:44:15Z) - Efficient Surrogate Models for Materials Science Simulations: Machine
Learning-based Prediction of Microstructure Properties [0.0]
Several machine learning algorithms have been applied in these scientific fields to enhance and accelerate simulation models or as surrogate models.
We develop and investigate the applications of six machine learning techniques based on two different datasets from the domain of materials science.
arXiv Detail & Related papers (2023-09-01T07:29:44Z) - Towards Complex Dynamic Physics System Simulation with Graph Neural ODEs [75.7104463046767]
This paper proposes a novel learning based simulation model that characterizes the varying spatial and temporal dependencies in particle systems.
We empirically evaluate GNSTODE's simulation performance on two real-world particle systems, Gravity and Coulomb.
arXiv Detail & Related papers (2023-05-21T03:51:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.