Overfitting in quantum machine learning and entangling dropout
- URL: http://arxiv.org/abs/2205.11446v1
- Date: Mon, 23 May 2022 16:35:46 GMT
- Title: Overfitting in quantum machine learning and entangling dropout
- Authors: Masahiro Kobayashi, Kohei Nakaji, Naoki Yamamoto
- Abstract summary: The ultimate goal in machine learning is to construct a model function that has a generalization capability for unseen dataset.
If the model function has too much expressibility power, then it may overfit to the training data and as a result lose the generalization capability.
This paper proposes a straightforward analogue of this technique in the quantum machine learning regime, the entangling dropout.
- Score: 0.9404723842159504
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The ultimate goal in machine learning is to construct a model function that
has a generalization capability for unseen dataset, based on given training
dataset. If the model function has too much expressibility power, then it may
overfit to the training data and as a result lose the generalization
capability. To avoid such overfitting issue, several techniques have been
developed in the classical machine learning regime, and the dropout is one such
effective method. This paper proposes a straightforward analogue of this
technique in the quantum machine learning regime, the entangling dropout,
meaning that some entangling gates in a given parametrized quantum circuit are
randomly removed during the training process to reduce the expressibility of
the circuit. Some simple case studies are given to show that this technique
actually suppresses the overfitting.
Related papers
- Learning complexity gradually in quantum machine learning models [0.29998889086656577]
We propose a framework that prioritizes informative data points over the entire training set.
By selectively focusing on informative samples, we aim to steer the optimization process toward more favorable regions of the parameter space.
Our findings indicate that this strategy could be a valuable approach for improving the performance of quantum machine learning models.
arXiv Detail & Related papers (2024-11-18T19:00:01Z) - Attribute-to-Delete: Machine Unlearning via Datamodel Matching [65.13151619119782]
Machine unlearning -- efficiently removing a small "forget set" training data on a pre-divertrained machine learning model -- has recently attracted interest.
Recent research shows that machine unlearning techniques do not hold up in such a challenging setting.
arXiv Detail & Related papers (2024-10-30T17:20:10Z) - Evolutionary-enhanced quantum supervised learning model [0.0]
This study proposes an evolutionary-enhanced ansatz-free supervised learning model.
In contrast to parametrized circuits, our model employs circuits with variable topology that evolves through an elitist method.
Our framework successfully avoids barren plateaus, resulting in enhanced model accuracy.
arXiv Detail & Related papers (2023-11-14T11:08:47Z) - A general learning scheme for classical and quantum Ising machines [0.0]
We propose a new machine learning model that is based on the Ising structure and can be efficiently trained using gradient descent.
We present some experimental results on the training and execution of the proposed learning model.
In particular, in the quantum realm, the quantum resources are used for both the execution and the training of the model, providing a promising perspective in quantum machine learning.
arXiv Detail & Related papers (2023-10-27T18:07:02Z) - A General Approach to Dropout in Quantum Neural Networks [1.5771347525430772]
"Overfitting" is the phenomenon occurring when a given model learns the training data excessively well.
With the advent of Quantum Neural Networks as learning models, overfitting might soon become an issue.
arXiv Detail & Related papers (2023-10-06T09:39:30Z) - A didactic approach to quantum machine learning with a single qubit [68.8204255655161]
We focus on the case of learning with a single qubit, using data re-uploading techniques.
We implement the different proposed formulations in toy and real-world datasets using the qiskit quantum computing SDK.
arXiv Detail & Related papers (2022-11-23T18:25:32Z) - Quantum circuit debugging and sensitivity analysis via local inversions [62.997667081978825]
We present a technique that pinpoints the sections of a quantum circuit that affect the circuit output the most.
We demonstrate the practicality and efficacy of the proposed technique by applying it to example algorithmic circuits implemented on IBM quantum machines.
arXiv Detail & Related papers (2022-04-12T19:39:31Z) - Quantum-tailored machine-learning characterization of a superconducting
qubit [50.591267188664666]
We develop an approach to characterize the dynamics of a quantum device and learn device parameters.
This approach outperforms physics-agnostic recurrent neural networks trained on numerically generated and experimental data.
This demonstration shows how leveraging domain knowledge improves the accuracy and efficiency of this characterization task.
arXiv Detail & Related papers (2021-06-24T15:58:57Z) - Preparation of excited states for nuclear dynamics on a quantum computer [117.44028458220427]
We study two different methods to prepare excited states on a quantum computer.
We benchmark these techniques on emulated and real quantum devices.
These findings show that quantum techniques designed to achieve good scaling on fault tolerant devices might also provide practical benefits on devices with limited connectivity and gate fidelity.
arXiv Detail & Related papers (2020-09-28T17:21:25Z) - Machine learning transfer efficiencies for noisy quantum walks [62.997667081978825]
We show that the process of finding requirements on both a graph type and a quantum system coherence can be automated.
The automation is done by using a convolutional neural network of a particular type that learns to understand with which network and under which coherence requirements quantum advantage is possible.
Our results are of importance for demonstration of advantage in quantum experiments and pave the way towards automating scientific research and discoveries.
arXiv Detail & Related papers (2020-01-15T18:36:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.