論文の概要: Symbolic Expression Transformer: A Computer Vision Approach for Symbolic
Regression
- arxiv url: http://arxiv.org/abs/2205.11798v1
- Date: Tue, 24 May 2022 05:35:46 GMT
- ステータス: 処理完了
- システム内更新日: 2022-05-25 12:30:36.651346
- Title: Symbolic Expression Transformer: A Computer Vision Approach for Symbolic
Regression
- Title(参考訳): 記号表現変換器:記号回帰のためのコンピュータビジョンアプローチ
- Authors: Jiachen Li, Ye Yuan, Hong-Bin Shen
- Abstract要約: シンボリック回帰(英: Symbolic Regression、SR)は、データに最も適合する数学的表現を自動的に見つけるための回帰分析の一種である。
人間はその曲線に基づいて数学的表現を推測できるという事実に触発され、記号表現変換器(SET)を提案する。
SETは、SRのコンピュータビジョンの観点からのサンプル非依存モデルである。
- 参考スコア(独自算出の注目度): 9.978824294461196
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Symbolic Regression (SR) is a type of regression analysis to automatically
find the mathematical expression that best fits the data. Currently, SR still
basically relies on various searching strategies so that a sample-specific
model is required to be optimized for every expression, which significantly
limits the model's generalization and efficiency. Inspired by the fact that
human beings can infer a mathematical expression based on the curve of it, we
propose Symbolic Expression Transformer (SET), a sample-agnostic model from the
perspective of computer vision for SR. Specifically, the collected data is
represented as images and an image caption model is employed for translating
images to symbolic expressions. A large-scale dataset without overlap between
training and testing sets in the image domain is released. Our results
demonstrate the effectiveness of SET and suggest the promising direction of
image-based model for solving the challenging SR problem.
- Abstract(参考訳): シンボリック回帰 (sr) は、データに最も適した数学的表現を自動的に見つける回帰分析の一種である。
現在、SRは基本的に様々な探索戦略に依存しており、全ての式にサンプル固有のモデルを最適化する必要があるため、モデルの一般化と効率は著しく制限されている。
本研究では,その曲線に基づいて数学的表現を推測できるという事実に着想を得て,SRのコンピュータビジョンの観点からのサンプル非依存モデルである記号表現変換器(SET)を提案する。
具体的には、収集したデータを画像として表現し、画像のシンボル表現への変換に画像キャプションモデルを用いる。
イメージドメイン内のトレーニングとテストセットの重複のない大規模なデータセットがリリースされます。
本研究は,SETの有効性を実証し,課題SR問題の解決に向けた画像ベースモデルの有望な方向性を提案する。
関連論文リスト
- Rethinking Image Super-Resolution from Training Data Perspectives [54.28824316574355]
画像超解像(SR)におけるトレーニングデータの効果について検討する。
そこで我々は,自動画像評価パイプラインを提案する。
その結果, (i) 圧縮アーチファクトの少ないデータセット, (ii) 被写体数によって判断される画像内多様性の高いデータセット, (iii) ImageNet や PASS からの大量の画像がSR性能に肯定的な影響を与えることがわかった。
論文 参考訳(メタデータ) (2024-09-01T16:25:04Z) - Efficient Visual State Space Model for Image Deblurring [83.57239834238035]
畳み込みニューラルネットワーク(CNN)とビジョントランスフォーマー(ViT)は、画像復元において優れた性能を発揮している。
本稿では,画像のデブロアに対する簡易かつ効果的な視覚状態空間モデル(EVSSM)を提案する。
論文 参考訳(メタデータ) (2024-05-23T09:13:36Z) - A Transformer Model for Symbolic Regression towards Scientific Discovery [11.827358526480323]
記号回帰(SR)は、数値データセットを最もよく記述する数学的表現を探索する。
本稿では, シンボリック回帰に着目した新しいトランスフォーマーモデルを提案する。
我々は、正規化ツリーベース編集距離を用いて、最先端の結果を出力するSRSDデータセットにベストモデルを適用した。
論文 参考訳(メタデータ) (2023-12-07T06:27:48Z) - Efficient Test-Time Adaptation for Super-Resolution with Second-Order
Degradation and Reconstruction [62.955327005837475]
画像超解像(SR)は,低分解能(LR)から高分解能(HR)へのマッピングを,一対のHR-LRトレーニング画像を用いて学習することを目的としている。
SRTTAと呼ばれるSRの効率的なテスト時間適応フレームワークを提案し、SRモデルを異なる/未知の劣化型でテストドメインに迅速に適応させることができる。
論文 参考訳(メタデータ) (2023-10-29T13:58:57Z) - Zero-shot Composed Text-Image Retrieval [72.43790281036584]
合成画像検索(CIR)の問題点を考察する。
テキストや画像などのマルチモーダル情報を融合し、クエリにマッチする画像を正確に検索し、ユーザの表現能力を拡張できるモデルをトレーニングすることを目的としている。
論文 参考訳(メタデータ) (2023-06-12T17:56:01Z) - Transformer-based Planning for Symbolic Regression [18.90700817248397]
シンボリック・レグレッションのためのトランスフォーマーに基づく計画戦略であるTPSRを提案する。
従来の復号法とは異なり、TPSRは精度や複雑さなど、微分不可能なフィードバックの統合を可能にする。
我々の手法は最先端の手法より優れており、モデルの適合・複雑性トレードオフ、象徴的能力、騒音に対する堅牢性を高めている。
論文 参考訳(メタデータ) (2023-03-13T03:29:58Z) - SymbolicGPT: A Generative Transformer Model for Symbolic Regression [3.685455441300801]
シンボル回帰のための新しいトランスフォーマーベース言語モデルであるSybolicGPTを提案する。
本モデルでは,精度,実行時間,データ効率に関して,競合モデルと比較して高い性能を示す。
論文 参考訳(メタデータ) (2021-06-27T03:26:35Z) - Masked Linear Regression for Learning Local Receptive Fields for Facial
Expression Synthesis [10.28711904929932]
本稿では,表情の局所的およびスパース的構造を利用したリッジ回帰の制約付きバージョンを提案する。
既存のアプローチとは対照的に,提案手法はより大きな画像サイズで効率的に訓練することができる。
提案アルゴリズムは、Pix2Pix, CycleGAN, StarGAN, GANimationなどの最先端のGANと比較される。
論文 参考訳(メタデータ) (2020-11-18T06:04:24Z) - Transferring and Regularizing Prediction for Semantic Segmentation [115.88957139226966]
本稿では,セマンティックセグメンテーションの本質的特性を利用して,モデル伝達におけるそのような問題を緩和する。
本稿では,モデル転送を教師なし方式で正規化するための制約として固有特性を課す予測伝達の正規化器(RPT)を提案する。
GTA5とSynTHIA(synthetic data)で訓練されたモデルの都市景観データセット(アーバンストリートシーン)への転送に関するRTPの提案を検証するため、大規模な実験を行った。
論文 参考訳(メタデータ) (2020-06-11T16:19:41Z) - Characteristic Regularisation for Super-Resolving Face Images [81.84939112201377]
既存の顔画像超解像法(SR)は、主に人工的にダウンサンプリングされた低解像度(LR)画像の改善に焦点を当てている。
従来の非教師なしドメイン適応(UDA)手法は、未ペアの真のLRとHRデータを用いてモデルをトレーニングすることでこの問題に対処する。
これにより、視覚的特徴を構成することと、画像の解像度を高めることの2つのタスクで、モデルをオーバーストレッチする。
従来のSRモデルとUDAモデルの利点を結合する手法を定式化する。
論文 参考訳(メタデータ) (2019-12-30T16:27:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。