DELTA: Diverse Client Sampling for Fasting Federated Learning
- URL: http://arxiv.org/abs/2205.13925v4
- Date: Sun, 29 Oct 2023 04:57:43 GMT
- Title: DELTA: Diverse Client Sampling for Fasting Federated Learning
- Authors: Lin Wang, YongXin Guo, Tao Lin, Xiaoying Tang
- Abstract summary: Partial client participation has been widely adopted in Federated Learning (FL) to reduce the communication burden efficiently.
Existing sampling methods are either biased or can be further optimized for faster convergence.
We present DELTA, an unbiased sampling scheme designed to alleviate these issues.
- Score: 9.45219058010201
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Partial client participation has been widely adopted in Federated Learning
(FL) to reduce the communication burden efficiently. However, an inadequate
client sampling scheme can lead to the selection of unrepresentative subsets,
resulting in significant variance in model updates and slowed convergence.
Existing sampling methods are either biased or can be further optimized for
faster convergence.In this paper, we present DELTA, an unbiased sampling scheme
designed to alleviate these issues. DELTA characterizes the effects of client
diversity and local variance, and samples representative clients with valuable
information for global model updates. In addition, DELTA is a proven optimal
unbiased sampling scheme that minimizes variance caused by partial client
participation and outperforms other unbiased sampling schemes in terms of
convergence. Furthermore, to address full-client gradient dependence,we provide
a practical version of DELTA depending on the available clients' information,
and also analyze its convergence. Our results are validated through experiments
on both synthetic and real-world datasets.
Related papers
- Emulating Full Client Participation: A Long-Term Client Selection Strategy for Federated Learning [48.94952630292219]
We propose a novel client selection strategy designed to emulate the performance achieved with full client participation.
In a single round, we select clients by minimizing the gradient-space estimation error between the client subset and the full client set.
In multi-round selection, we introduce a novel individual fairness constraint, which ensures that clients with similar data distributions have similar frequencies of being selected.
arXiv Detail & Related papers (2024-05-22T12:27:24Z) - Leveraging Foundation Models to Improve Lightweight Clients in Federated
Learning [16.684749528240587]
Federated Learning (FL) is a distributed training paradigm that enables clients scattered across the world to cooperatively learn a global model without divulging confidential data.
FL faces a significant challenge in the form of heterogeneous data distributions among clients, which leads to a reduction in performance and robustness.
We introduce foundation model distillation to assist in the federated training of lightweight client models and increase their performance under heterogeneous data settings while keeping inference costs low.
arXiv Detail & Related papers (2023-11-14T19:10:56Z) - Enhanced Federated Optimization: Adaptive Unbiased Client Sampling with Reduced Variance [37.646655530394604]
Federated Learning (FL) is a distributed learning paradigm to train a global model across multiple devices without collecting local data.
We present the first adaptive client sampler, K-Vib, employing an independent sampling procedure.
K-Vib achieves a linear speed-up on the regret bound $tildemathcalObig(Nfrac13Tfrac23/Kfrac43big)$ within a set communication budget.
arXiv Detail & Related papers (2023-10-04T10:08:01Z) - Personalized Federated Learning under Mixture of Distributions [98.25444470990107]
We propose a novel approach to Personalized Federated Learning (PFL), which utilizes Gaussian mixture models (GMM) to fit the input data distributions across diverse clients.
FedGMM possesses an additional advantage of adapting to new clients with minimal overhead, and it also enables uncertainty quantification.
Empirical evaluations on synthetic and benchmark datasets demonstrate the superior performance of our method in both PFL classification and novel sample detection.
arXiv Detail & Related papers (2023-05-01T20:04:46Z) - Adaptive Federated Learning via New Entropy Approach [14.595709494370372]
Federated Learning (FL) has emerged as a prominent distributed machine learning framework.
In this paper, we propose an adaptive FEDerated learning algorithm based on ENTropy theory (FedEnt) to alleviate the parameter deviation among heterogeneous clients.
arXiv Detail & Related papers (2023-03-27T07:57:04Z) - When to Trust Aggregated Gradients: Addressing Negative Client Sampling
in Federated Learning [41.51682329500003]
We propose a novel learning rate adaptation mechanism to adjust the server learning rate for the aggregated gradient in each round.
We make theoretical deductions to find a meaningful and robust indicator that is positively related to the optimal server learning rate.
arXiv Detail & Related papers (2023-01-25T03:52:45Z) - Federated Graph-based Sampling with Arbitrary Client Availability [34.95352685954059]
We propose a framework named Federated Graph-based Sampling (FedGS) to stabilize the global model update and mitigate the long-term bias given arbitrary client availability simultaneously.
Our experimental results confirm FedGS's advantage in both enabling a fair client-sampling scheme and improving the model performance under arbitrary client availability.
arXiv Detail & Related papers (2022-11-25T09:38:20Z) - Fed-CBS: A Heterogeneity-Aware Client Sampling Mechanism for Federated
Learning via Class-Imbalance Reduction [76.26710990597498]
We show that the class-imbalance of the grouped data from randomly selected clients can lead to significant performance degradation.
Based on our key observation, we design an efficient client sampling mechanism, i.e., Federated Class-balanced Sampling (Fed-CBS)
In particular, we propose a measure of class-imbalance and then employ homomorphic encryption to derive this measure in a privacy-preserving way.
arXiv Detail & Related papers (2022-09-30T05:42:56Z) - Straggler-Resilient Personalized Federated Learning [55.54344312542944]
Federated learning allows training models from samples distributed across a large network of clients while respecting privacy and communication restrictions.
We develop a novel algorithmic procedure with theoretical speedup guarantees that simultaneously handles two of these hurdles.
Our method relies on ideas from representation learning theory to find a global common representation using all clients' data and learn a user-specific set of parameters leading to a personalized solution for each client.
arXiv Detail & Related papers (2022-06-05T01:14:46Z) - DRFLM: Distributionally Robust Federated Learning with Inter-client
Noise via Local Mixup [58.894901088797376]
federated learning has emerged as a promising approach for training a global model using data from multiple organizations without leaking their raw data.
We propose a general framework to solve the above two challenges simultaneously.
We provide comprehensive theoretical analysis including robustness analysis, convergence analysis, and generalization ability.
arXiv Detail & Related papers (2022-04-16T08:08:29Z) - Towards Fair Federated Learning with Zero-Shot Data Augmentation [123.37082242750866]
Federated learning has emerged as an important distributed learning paradigm, where a server aggregates a global model from many client-trained models while having no access to the client data.
We propose a novel federated learning system that employs zero-shot data augmentation on under-represented data to mitigate statistical heterogeneity and encourage more uniform accuracy performance across clients in federated networks.
We study two variants of this scheme, Fed-ZDAC (federated learning with zero-shot data augmentation at the clients) and Fed-ZDAS (federated learning with zero-shot data augmentation at the server).
arXiv Detail & Related papers (2021-04-27T18:23:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.