論文の概要: Auditing Differential Privacy in High Dimensions with the Kernel Quantum
R\'enyi Divergence
- arxiv url: http://arxiv.org/abs/2205.13941v1
- Date: Fri, 27 May 2022 12:34:17 GMT
- ステータス: 処理完了
- システム内更新日: 2022-05-30 14:02:19.463312
- Title: Auditing Differential Privacy in High Dimensions with the Kernel Quantum
R\'enyi Divergence
- Title(参考訳): Kernel Quantum R'enyi Divergenceによる高次元微分プライバシーの検討
- Authors: Carles Domingo-Enrich, Youssef Mroueh
- Abstract要約: 本稿では,確率分布の新たな相違点に基づく差分プライバシーの緩和を提案する。
正規化カーネル R'enyi の発散は高次元においてもサンプルから推定可能であることを示す。
- 参考スコア(独自算出の注目度): 29.796646032324514
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Differential privacy (DP) is the de facto standard for private data release
and private machine learning. Auditing black-box DP algorithms and mechanisms
to certify whether they satisfy a certain DP guarantee is challenging,
especially in high dimension. We propose relaxations of differential privacy
based on new divergences on probability distributions: the kernel R\'enyi
divergence and its regularized version. We show that the regularized kernel
R\'enyi divergence can be estimated from samples even in high dimensions,
giving rise to auditing procedures for $\varepsilon$-DP,
$(\varepsilon,\delta)$-DP and $(\alpha,\varepsilon)$-R\'enyi DP.
- Abstract(参考訳): differential privacy (dp)は、プライベートデータリリースとプライベート機械学習のデファクトスタンダードである。
特定のDP保証を満たすかどうかを認証するためのブラックボックスDPアルゴリズムとメカニズムの監査は、特に高次元において困難である。
本稿では,カーネルR'enyi分散とその正規化バージョンという,確率分布に基づく微分プライバシーの緩和を提案する。
正規化された核 r\'enyi の発散は、高次元でもサンプルから推定できることを示し、$\varepsilon$-dp, $(\varepsilon,\delta)$-dp および $(\alpha,\varepsilon)$-r\'enyi dp の監査手順をもたらす。
関連論文リスト
- Differentially Private Stochastic Gradient Descent with Fixed-Size Minibatches: Tighter RDP Guarantees with or without Replacement [6.494759487261151]
固定サイズサブサンプリングシステムにおけるDP-SGD勾配は、メモリ使用率のメリットに加えて、実際的なばらつきが低い。
広範に使われているPoissonサブサンプリングとFSwoRが置き換え1つの隣接性を持つことが、サンプリング確率の上位に同じプライバシを持つことを示す。
論文 参考訳(メタデータ) (2024-08-19T23:57:31Z) - Private Mean Estimation with Person-Level Differential Privacy [6.621676316292624]
複数のサンプルを持つ場合の個人レベルの個人別平均推定について検討した。
我々は、計算効率のよいアルゴリズムを、純粋DPで、計算効率の悪いアルゴリズムを、ほぼ一致する下界は、近似DPの最も寛容な場合を抑える。
論文 参考訳(メタデータ) (2024-05-30T18:20:35Z) - How Private are DP-SGD Implementations? [61.19794019914523]
2種類のバッチサンプリングを使用する場合、プライバシ分析の間に大きなギャップがあることが示される。
その結果,2種類のバッチサンプリングでは,プライバシ分析の間に大きなギャップがあることが判明した。
論文 参考訳(メタデータ) (2024-03-26T13:02:43Z) - Privacy Profiles for Private Selection [21.162924003105484]
私たちは、ReportNoisyMaxとPrivateTuningのプライバシプロファイルを、それらが相関するベースアルゴリズムのプライバシプロファイルを使ってバウンドする、使いやすいレシピを開発しています。
このアプローチはすべての利害関係を改善し、エンドツーエンドのプライベート学習実験において大きなメリットをもたらす。
論文 参考訳(メタデータ) (2024-02-09T08:31:46Z) - Analyzing Privacy Leakage in Machine Learning via Multiple Hypothesis
Testing: A Lesson From Fano [83.5933307263932]
本研究では,離散データに対するデータ再構成攻撃について検討し,仮説テストの枠組みの下で解析する。
基礎となるプライベートデータが$M$のセットから値を取ると、ターゲットのプライバシパラメータ$epsilon$が$O(log M)$になる。
論文 参考訳(メタデータ) (2022-10-24T23:50:12Z) - Normalized/Clipped SGD with Perturbation for Differentially Private
Non-Convex Optimization [94.06564567766475]
DP-SGDとDP-NSGDは、センシティブなトレーニングデータを記憶する大規模モデルのリスクを軽減する。
DP-NSGD は DP-SGD よりも比較的チューニングが比較的容易であるのに対して,これらの2つのアルゴリズムは同様の精度を実現する。
論文 参考訳(メタデータ) (2022-06-27T03:45:02Z) - Shuffle Gaussian Mechanism for Differential Privacy [2.7564955518050693]
$$ epsilon(lambda) leq frac1lambda-1logleft(frace-da/2sigma2ndasum_substackk_+dotsc+k_n=lambda;k_nlambda!k_nlambda!k_nlambda!
論文 参考訳(メタデータ) (2022-06-20T04:54:16Z) - Individual Privacy Accounting for Differentially Private Stochastic Gradient Descent [69.14164921515949]
DP-SGDで訓練されたモデルをリリースする際の個々の事例に対するプライバシー保証を特徴付ける。
ほとんどの例では、最悪のケースよりも強力なプライバシー保証を享受しています。
これは、モデルユーティリティの観点からは守られないグループが同時に、より弱いプライバシー保証を経験することを意味する。
論文 参考訳(メタデータ) (2022-06-06T13:49:37Z) - Differentially Private Exploration in Reinforcement Learning with Linear
Representation [102.17246636801649]
まず,線形混合MDP(Ayob et al., 2020)の設定(モデルベース設定)について検討し,共同・局所微分プライベート(DP)探索を統一的に分析するための枠組みを提供する。
我々はさらに、線形MDP(Jin et al., 2020)におけるプライバシー保護探索(つまりモデルフリー設定)について研究し、$widetildeO(sqrtK/epsilon)$ regret bound for $(epsilon,delta)を提供する。
論文 参考訳(メタデータ) (2021-12-02T19:59:50Z) - A unified interpretation of the Gaussian mechanism for differential
privacy through the sensitivity index [61.675604648670095]
GMの一般的な3つの解釈、すなわち$(varepsilon, delta)$-DP, f-DP, R'enyi DPは1つのパラメータ$psi$で表現できる。
$psi$は、クエリの感度とノイズ摂動の大きさの2つの基本量をカプセル化することによって、GMとその特性を特徴付ける。
論文 参考訳(メタデータ) (2021-09-22T06:20:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。