論文の概要: AI-aided multiscale modeling of physiologically-significant blood clots
- arxiv url: http://arxiv.org/abs/2205.14121v1
- Date: Wed, 25 May 2022 03:48:36 GMT
- ステータス: 処理完了
- システム内更新日: 2022-05-30 14:39:41.873880
- Title: AI-aided multiscale modeling of physiologically-significant blood clots
- Title(参考訳): 生理学的に重要な血液凝固物のai支援マルチスケールモデリング
- Authors: Yicong Zhu, Changnian Han, Peng Zhang, Guojing Cong, James R.Kozloski,
Chih-Chieh Yang, Leili Zhang and Yuefan Deng
- Abstract要約: 我々はAI支援マルチタイムステップアルゴリズムとマルチスケールモデリングフレームワーク(AI-MSM)を開発した。
AI-MSMは、血小板内、血小板間相互作用、および液-血小板間相互作用を含む、複数の物理学を統合する最初の種である。
1億2200万個の粒子の大量血液凝固モデルをシミュレートした。
- 参考スコア(独自算出の注目度): 5.111053690540527
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We have developed an AI-aided multiple time stepping (AI-MTS) algorithm and
multiscale modeling framework (AI-MSM) and implemented them on the Summit-like
supercomputer, AIMOS. AI-MSM is the first of its kind to integrate
multi-physics, including intra-platelet, inter-platelet, and fluid-platelet
interactions, into one system. It has simulated a record-setting multiscale
blood clotting model of 102 million particles, of which 70 flowing and 180
aggregating platelets, under dissipative particle dynamics to coarse-grained
molecular dynamics. By adaptively adjusting timestep sizes to match the
characteristic time scales of the underlying dynamics, AI-MTS optimally
balances speeds and accuracies of the simulations.
- Abstract(参考訳): 我々はai支援マルチタイムステッピング(ai-mts)アルゴリズムとマルチスケールモデリングフレームワーク(ai-msm)を開発し,summitライクなスーパーコンピュータであるaimosに実装した。
ai-msmは、プレート内、プレート間、流体-プレート間相互作用を含むマルチフィジカルを1つのシステムに統合する最初の方法である。
粒径が粗い分子動力学の散逸する粒子動力学の下で、10200万個の粒子のうち70個の流れと180個の凝集血小板の大量血液凝固モデルをシミュレートした。
ai-mtsは、基礎となるダイナミクスの特徴的な時間スケールに合わせた時間ステップサイズを適応的に調整することで、シミュレーションの速度と精度を最適にバランスさせる。
関連論文リスト
- A Multi-Grained Symmetric Differential Equation Model for Learning Protein-Ligand Binding Dynamics [73.35846234413611]
薬物発見において、分子動力学(MD)シミュレーションは、結合親和性を予測し、輸送特性を推定し、ポケットサイトを探索する強力なツールを提供する。
我々は,数値MDを容易にし,タンパク質-リガンド結合ダイナミクスの正確なシミュレーションを提供する,最初の機械学習サロゲートであるNeuralMDを提案する。
従来の数値MDシミュレーションと比較して1K$times$ Speedupを実現することにより,NeuralMDの有効性と有効性を示す。
論文 参考訳(メタデータ) (2024-01-26T09:35:17Z) - Micro-Macro Consistency in Multiscale Modeling: Score-Based Model
Assisted Sampling of Fast/Slow Dynamical Systems [0.0]
物理に基づくマルチ時間動的システムの研究において,サンプリングの高度化のための技術が開発されている。
機械学習の分野では、生成モデルの一般的な目標は、この密度から経験的なサンプルをトレーニングした後、ターゲット密度からサンプリングすることである。
本研究では,SGMをこのような結合フレームワークで利用することにより,マルチスケールな動的システムにおけるサンプリングを改善することができることを示す。
論文 参考訳(メタデータ) (2023-12-10T00:46:37Z) - Rethinking materials simulations: Blending direct numerical simulations
with neural operators [1.6874375111244329]
そこで本研究では,数値解法とニューラル演算子をブレンドしてシミュレーションを高速化する手法を開発した。
物理蒸着中の微細構造変化シミュレーションにおけるこの枠組みの有効性を実証する。
論文 参考訳(メタデータ) (2023-12-08T23:44:54Z) - Implicit Transfer Operator Learning: Multiple Time-Resolution Surrogates
for Molecular Dynamics [8.35780131268962]
シミュレーションプロセスのサロゲートを複数の時間分解能で学習するフレームワークであるImplict Transfer Operator (ITO) Learningを提案する。
また、全原子分子動力学を定量的にモデル化できる粗粒CG-SE3-ITOモデルを提案する。
論文 参考訳(メタデータ) (2023-05-29T12:19:41Z) - Accurate Machine Learned Quantum-Mechanical Force Fields for
Biomolecular Simulations [51.68332623405432]
分子動力学(MD)シミュレーションは、化学的および生物学的プロセスに関する原子論的な洞察を可能にする。
近年,MDシミュレーションの代替手段として機械学習力場(MLFF)が出現している。
本研究は、大規模分子シミュレーションのための正確なMLFFを構築するための一般的なアプローチを提案する。
論文 参考訳(メタデータ) (2022-05-17T13:08:28Z) - Simulate Time-integrated Coarse-grained Molecular Dynamics with
Multi-Scale Graph Networks [4.444748822792469]
学習に基づく力場はアブ・イニシアトMDシミュレーションの高速化に大きな進歩を遂げているが、現実の多くのアプリケーションでは不十分である。
非常に大きな時間ステップで、粗粒MDを直接シミュレートするマルチスケールグラフニューラルネットワークを学習することで、これらの課題に対処することを目指している。
論文 参考訳(メタデータ) (2022-04-21T18:07:08Z) - Real-time Neural-MPC: Deep Learning Model Predictive Control for
Quadrotors and Agile Robotic Platforms [59.03426963238452]
モデル予測制御パイプライン内の動的モデルとして,大規模で複雑なニューラルネットワークアーキテクチャを効率的に統合するフレームワークであるReal-time Neural MPCを提案する。
ニューラルネットワークを使わずに、最先端のMPCアプローチと比較して、位置追跡誤差を最大82%削減することで、実世界の問題に対する我々のフレームワークの実現可能性を示す。
論文 参考訳(メタデータ) (2022-03-15T09:38:15Z) - NNP/MM: Accelerating molecular dynamics simulations with machine
learning potentials and molecular mechanic [38.50309739333058]
ニューラルネットワーク電位(NNP)と分子力学(MM)を組み合わせたハイブリッド手法(NNP/MM)の最適化実装を提案する。
このアプローチは、小さな分子のようなシステムの一部をNNPを用いてモデル化し、残りのシステムにMMを用いて効率を向上する。
これにより, シミュレーション速度を5倍に向上し, 複合体毎の1マイクロ秒の同時サンプリングを実現し, この種のシミュレーションで報告された最長のシミュレーションとなった。
論文 参考訳(メタデータ) (2022-01-20T10:57:20Z) - Deep Bayesian Active Learning for Accelerating Stochastic Simulation [74.58219903138301]
Interactive Neural Process(INP)は、シミュレーションとアクティブな学習アプローチのためのディープラーニングフレームワークである。
能動的学習のために,NPベースモデルの潜時空間で計算された新しい取得関数Latent Information Gain (LIG)を提案する。
その結果,STNPは学習環境のベースラインを上回り,LIGは能動学習の最先端を達成していることがわかった。
論文 参考訳(メタデータ) (2021-06-05T01:31:51Z) - Dynamic Mode Decomposition in Adaptive Mesh Refinement and Coarsening
Simulations [58.720142291102135]
動的モード分解(DMD)はコヒーレントなスキームを抽出する強力なデータ駆動方式である。
本稿では,異なるメッシュトポロジと次元の観測からDMDを抽出する戦略を提案する。
論文 参考訳(メタデータ) (2021-04-28T22:14:25Z) - Learning to Simulate Complex Physics with Graph Networks [68.43901833812448]
本稿では,機械学習のフレームワークとモデルの実装について紹介する。
グラフネットワーク・ベース・シミュレータ(GNS)と呼ばれる我々のフレームワークは、グラフ内のノードとして表現された粒子で物理系の状態を表現し、学習されたメッセージパスによって動的を計算します。
我々のモデルは,訓練中に数千の粒子による1段階の予測から,異なる初期条件,数千の時間ステップ,少なくとも1桁以上の粒子をテスト時に一般化できることを示す。
論文 参考訳(メタデータ) (2020-02-21T16:44:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。