論文の概要: Rethinking materials simulations: Blending direct numerical simulations
with neural operators
- arxiv url: http://arxiv.org/abs/2312.05410v1
- Date: Fri, 8 Dec 2023 23:44:54 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-12 20:56:42.760955
- Title: Rethinking materials simulations: Blending direct numerical simulations
with neural operators
- Title(参考訳): 再考する材料シミュレーション:ニューラル演算子を用いた直接数値シミュレーション
- Authors: Vivek Oommen, Khemraj Shukla, Saaketh Desai, Remi Dingreville, George
Em Karniadakis
- Abstract要約: そこで本研究では,数値解法とニューラル演算子をブレンドしてシミュレーションを高速化する手法を開発した。
物理蒸着中の微細構造変化シミュレーションにおけるこの枠組みの有効性を実証する。
- 参考スコア(独自算出の注目度): 1.6874375111244329
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Direct numerical simulations (DNS) are accurate but computationally expensive
for predicting materials evolution across timescales, due to the complexity of
the underlying evolution equations, the nature of multiscale spatio-temporal
interactions, and the need to reach long-time integration. We develop a new
method that blends numerical solvers with neural operators to accelerate such
simulations. This methodology is based on the integration of a community
numerical solver with a U-Net neural operator, enhanced by a
temporal-conditioning mechanism that enables accurate extrapolation and
efficient time-to-solution predictions of the dynamics. We demonstrate the
effectiveness of this framework on simulations of microstructure evolution
during physical vapor deposition modeled via the phase-field method. Such
simulations exhibit high spatial gradients due to the co-evolution of different
material phases with simultaneous slow and fast materials dynamics. We
establish accurate extrapolation of the coupled solver with up to 16.5$\times$
speed-up compared to DNS. This methodology is generalizable to a broad range of
evolutionary models, from solid mechanics, to fluid dynamics, geophysics,
climate, and more.
- Abstract(参考訳): 直接数値シミュレーション(DNS)は、基礎となる進化方程式の複雑さ、マルチスケールの時空間相互作用の性質、長期の統合の必要性により、時間スケールの材料進化を予測するのに正確だが計算コストがかかる。
このようなシミュレーションを高速化するために,数値解法とニューラルネットワークをブレンドする新しい手法を開発した。
本手法は, コミュニティ数値解法とu-netニューラルネットワークの統合を基礎とし, 正確な外挿と効率的な解法予測を可能にする時間条件機構により拡張した。
相場法による物理気相沈着過程の微構造変化シミュレーションにおける本フレームワークの有効性を実証する。
このようなシミュレーションは、遅い物質と速い物質が同時進行する異なる物質相の共進化によって高い空間勾配を示す。
DNSと比較して最大16.5$\times$スピードアップで結合した解の正確な外挿を確立する。
この方法論は、固体力学、流体力学、地球物理学、気候など、幅広い進化モデルに一般化することができる。
関連論文リスト
- Physics-enhanced Neural Operator for Simulating Turbulent Transport [9.923888452768919]
本稿では、偏微分方程式(PDE)の物理知識を取り入れた物理強化型ニューラル演算子(PENO)について、正確に流れのダイナミクスをモデル化する。
提案手法は,2つの異なる3次元乱流データに対して,その性能評価を行う。
論文 参考訳(メタデータ) (2024-05-31T20:05:17Z) - Enhancing Computational Efficiency in Multiscale Systems Using Deep Learning of Coordinates and Flow Maps [0.0]
本稿では,マルチスケールシステムにおいて,ディープラーニング技術を用いて正確なタイムステッピング手法を構築する方法について述べる。
結果として得られるフレームワークは、より少ない計算コストで最先端の予測精度を達成する。
論文 参考訳(メタデータ) (2024-04-28T14:05:13Z) - A Multi-Grained Symmetric Differential Equation Model for Learning Protein-Ligand Binding Dynamics [73.35846234413611]
薬物発見において、分子動力学(MD)シミュレーションは、結合親和性を予測し、輸送特性を推定し、ポケットサイトを探索する強力なツールを提供する。
我々は,数値MDを容易にし,タンパク質-リガンド結合ダイナミクスの正確なシミュレーションを提供する,最初の機械学習サロゲートであるNeuralMDを提案する。
従来の数値MDシミュレーションと比較して1K$times$ Speedupを実現することにより,NeuralMDの有効性と有効性を示す。
論文 参考訳(メタデータ) (2024-01-26T09:35:17Z) - Equivariant Graph Neural Operator for Modeling 3D Dynamics [148.98826858078556]
我々は,次のステップの予測ではなく,ダイナミックスを直接トラジェクトリとしてモデル化するために,Equivariant Graph Neural Operator (EGNO)を提案する。
EGNOは3次元力学の時間的進化を明示的に学習し、時間とともに関数として力学を定式化し、それを近似するためにニューラル演算子を学習する。
粒子シミュレーション、人間のモーションキャプチャー、分子動力学を含む複数の領域における総合的な実験は、既存の手法と比較して、EGNOの極めて優れた性能を示す。
論文 参考訳(メタデータ) (2024-01-19T21:50:32Z) - Neural Operators for Accelerating Scientific Simulations and Design [85.89660065887956]
Neural Operatorsとして知られるAIフレームワークは、継続的ドメインで定義された関数間のマッピングを学習するための原則的なフレームワークを提供する。
ニューラルオペレータは、計算流体力学、天気予報、物質モデリングなど、多くのアプリケーションで既存のシミュレータを拡張または置き換えることができる。
論文 参考訳(メタデータ) (2023-09-27T00:12:07Z) - On Fast Simulation of Dynamical System with Neural Vector Enhanced
Numerical Solver [59.13397937903832]
ニューラルベクトル(NeurVec)と呼ばれる深層学習に基づく補正手法を提案する。
NeurVecは、統合エラーを補償し、シミュレーションでより大きなタイムステップサイズを可能にする。
様々な複雑な力学系ベンチマークの実験により、NeurVecは顕著な一般化能力を示すことが示された。
論文 参考訳(メタデータ) (2022-08-07T09:02:18Z) - Towards Fast Simulation of Environmental Fluid Mechanics with
Multi-Scale Graph Neural Networks [0.0]
我々は、非定常連続体力学を推論するための新しいマルチスケールグラフニューラルネットワークモデルであるMultiScaleGNNを紹介する。
本手法は, 海洋および大気プロセスの基本的な現象である, 対流問題と非圧縮性流体力学について実証する。
MultiScaleGNNで得られたシミュレーションは、トレーニングされたシミュレーションよりも2~4桁高速である。
論文 参考訳(メタデータ) (2022-05-05T13:33:03Z) - Deep Bayesian Active Learning for Accelerating Stochastic Simulation [74.58219903138301]
Interactive Neural Process(INP)は、シミュレーションとアクティブな学習アプローチのためのディープラーニングフレームワークである。
能動的学習のために,NPベースモデルの潜時空間で計算された新しい取得関数Latent Information Gain (LIG)を提案する。
その結果,STNPは学習環境のベースラインを上回り,LIGは能動学習の最先端を達成していることがわかった。
論文 参考訳(メタデータ) (2021-06-05T01:31:51Z) - Scalable nonparametric Bayesian learning for heterogeneous and dynamic
velocity fields [8.744017403796406]
速度場データの不均一および動的パターンを学習するモデルを開発した。
複雑な多車間相互作用のNGSIMデータセットに対して,本手法の有効性を示す。
論文 参考訳(メタデータ) (2021-02-15T17:45:46Z) - Machine learning for rapid discovery of laminar flow channel wall
modifications that enhance heat transfer [56.34005280792013]
任意の, 平坦な, 非平坦なチャネルの正確な数値シミュレーションと, ドラッグ係数とスタントン数を予測する機械学習モデルを組み合わせる。
畳み込みニューラルネットワーク(CNN)は,数値シミュレーションのわずかな時間で,目標特性を正確に予測できることを示す。
論文 参考訳(メタデータ) (2021-01-19T16:14:02Z) - Learning Incompressible Fluid Dynamics from Scratch -- Towards Fast,
Differentiable Fluid Models that Generalize [7.707887663337803]
最近のディープラーニングベースのアプローチは、膨大なスピードアップを約束するが、新しい流体ドメインには一般化しない。
本稿では,新しい流体領域に一般化する物理制約付きトレーニング手法を提案する。
トレーニングされたモデルの速度と一般化能力を示すインタラクティブなリアルタイムデモを提示する。
論文 参考訳(メタデータ) (2020-06-15T20:59:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。