Selective Inference for Sparse Multitask Regression with Applications in
Neuroimaging
- URL: http://arxiv.org/abs/2205.14220v4
- Date: Thu, 10 Aug 2023 02:18:52 GMT
- Title: Selective Inference for Sparse Multitask Regression with Applications in
Neuroimaging
- Authors: Snigdha Panigrahi, Natasha Stewart, Chandra Sekhar Sripada, Elizaveta
Levina
- Abstract summary: We propose a framework for selective inference to address a common multi-task problem in neuroimaging.
Our framework offers a new conditional procedure for inference, based on a refinement of the selection event that yields a tractable selection-adjusted likelihood.
We demonstrate through simulations that multi-task learning with selective inference can more accurately recover true signals than single-task methods.
- Score: 2.611153304251067
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multi-task learning is frequently used to model a set of related response
variables from the same set of features, improving predictive performance and
modeling accuracy relative to methods that handle each response variable
separately. Despite the potential of multi-task learning to yield more powerful
inference than single-task alternatives, prior work in this area has largely
omitted uncertainty quantification. Our focus in this paper is a common
multi-task problem in neuroimaging, where the goal is to understand the
relationship between multiple cognitive task scores (or other subject-level
assessments) and brain connectome data collected from imaging. We propose a
framework for selective inference to address this problem, with the flexibility
to: (i) jointly identify the relevant covariates for each task through a
sparsity-inducing penalty, and (ii) conduct valid inference in a model based on
the estimated sparsity structure. Our framework offers a new conditional
procedure for inference, based on a refinement of the selection event that
yields a tractable selection-adjusted likelihood. This gives an approximate
system of estimating equations for maximum likelihood inference, solvable via a
single convex optimization problem, and enables us to efficiently form
confidence intervals with approximately the correct coverage. Applied to both
simulated data and data from the Adolescent Brain Cognitive Development (ABCD)
study, our selective inference methods yield tighter confidence intervals than
commonly used alternatives, such as data splitting. We also demonstrate through
simulations that multi-task learning with selective inference can more
accurately recover true signals than single-task methods.
Related papers
- Switchable Decision: Dynamic Neural Generation Networks [98.61113699324429]
We propose a switchable decision to accelerate inference by dynamically assigning resources for each data instance.
Our method benefits from less cost during inference while keeping the same accuracy.
arXiv Detail & Related papers (2024-05-07T17:44:54Z) - Similarity-based Memory Enhanced Joint Entity and Relation Extraction [3.9659135716762894]
Document-level joint entity and relation extraction is a challenging information extraction problem.
We present a multi-task learning framework with bidirectional memory-like dependency between tasks.
Our empirical studies show that the proposed approach outperforms the existing methods.
arXiv Detail & Related papers (2023-07-14T12:26:56Z) - Multi-Task Learning with Summary Statistics [4.871473117968554]
We propose a flexible multi-task learning framework utilizing summary statistics from various sources.
We also present an adaptive parameter selection approach based on a variant of Lepski's method.
This work offers a more flexible tool for training related models across various domains, with practical implications in genetic risk prediction.
arXiv Detail & Related papers (2023-07-05T15:55:23Z) - An Information-Theoretic Approach for Estimating Scenario Generalization
in Crowd Motion Prediction [27.10815774845461]
We propose a novel scoring method, which characterizes generalization of models trained on source crowd scenarios and applied to target crowd scenarios.
The Interaction component aims to characterize the difficulty of scenario domains, while the diversity of a scenario domain is captured in the Diversity score.
Our experimental results validate the efficacy of the proposed method on several simulated and real-world (source,target) generalization tasks.
arXiv Detail & Related papers (2022-11-02T01:39:30Z) - Batch Active Learning from the Perspective of Sparse Approximation [12.51958241746014]
Active learning enables efficient model training by leveraging interactions between machine learning agents and human annotators.
We study and propose a novel framework that formulates batch active learning from the sparse approximation's perspective.
Our active learning method aims to find an informative subset from the unlabeled data pool such that the corresponding training loss function approximates its full data pool counterpart.
arXiv Detail & Related papers (2022-11-01T03:20:28Z) - Multi-task Bias-Variance Trade-off Through Functional Constraints [102.64082402388192]
Multi-task learning aims to acquire a set of functions that perform well for diverse tasks.
In this paper we draw intuition from the two extreme learning scenarios -- a single function for all tasks, and a task-specific function that ignores the other tasks.
We introduce a constrained learning formulation that enforces domain specific solutions to a central function.
arXiv Detail & Related papers (2022-10-27T16:06:47Z) - Multi-task Supervised Learning via Cross-learning [102.64082402388192]
We consider a problem known as multi-task learning, consisting of fitting a set of regression functions intended for solving different tasks.
In our novel formulation, we couple the parameters of these functions, so that they learn in their task specific domains while staying close to each other.
This facilitates cross-fertilization in which data collected across different domains help improving the learning performance at each other task.
arXiv Detail & Related papers (2020-10-24T21:35:57Z) - Learning Diverse Representations for Fast Adaptation to Distribution
Shift [78.83747601814669]
We present a method for learning multiple models, incorporating an objective that pressures each to learn a distinct way to solve the task.
We demonstrate our framework's ability to facilitate rapid adaptation to distribution shift.
arXiv Detail & Related papers (2020-06-12T12:23:50Z) - Task-Feature Collaborative Learning with Application to Personalized
Attribute Prediction [166.87111665908333]
We propose a novel multi-task learning method called Task-Feature Collaborative Learning (TFCL)
Specifically, we first propose a base model with a heterogeneous block-diagonal structure regularizer to leverage the collaborative grouping of features and tasks.
As a practical extension, we extend the base model by allowing overlapping features and differentiating the hard tasks.
arXiv Detail & Related papers (2020-04-29T02:32:04Z) - Improving Multi-Turn Response Selection Models with Complementary
Last-Utterance Selection by Instance Weighting [84.9716460244444]
We consider utilizing the underlying correlation in the data resource itself to derive different kinds of supervision signals.
We conduct extensive experiments in two public datasets and obtain significant improvement in both datasets.
arXiv Detail & Related papers (2020-02-18T06:29:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.