論文の概要: WaveMix-Lite: A Resource-efficient Neural Network for Image Analysis
- arxiv url: http://arxiv.org/abs/2205.14375v1
- Date: Sat, 28 May 2022 09:08:50 GMT
- ステータス: 処理完了
- システム内更新日: 2022-06-04 20:38:40.228109
- Title: WaveMix-Lite: A Resource-efficient Neural Network for Image Analysis
- Title(参考訳): WaveMix-Lite:画像解析のための資源効率の高いニューラルネットワーク
- Authors: Pranav Jeevan, Kavitha Viswanathan, Amit Sethi
- Abstract要約: 新しいアーキテクチャであるWaveMix-Liteは、現代のトランスフォーマーや畳み込みニューラルネットワーク(CNN)と同等に一般化できる
WaveMix-Liteは多用途でスケーラブルなアーキテクチャフレームワークで、複数のビジョンタスクに使用できます。
5つのEMNISTデータセットで最先端の精度を達成し、ImageNet-1K(64$times$64画像)でCNNとトランスフォーマーを上回り、Cityscapes検証セットで75.32 %のmIoUを達成する。
- 参考スコア(独自算出の注目度): 2.3014300466616078
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Gains in the ability to generalize on image analysis tasks for neural
networks have come at the cost of increased number of parameters and layers,
dataset sizes, training and test computations, and GPU RAM. We introduce a new
architecture -- WaveMix-Lite -- that can generalize on par with contemporary
transformers and convolutional neural networks (CNNs) while needing fewer
resources. WaveMix-Lite uses 2D-discrete wavelet transform to efficiently mix
spatial information from pixels. WaveMix-Lite seems to be a versatile and
scalable architectural framework that can be used for multiple vision tasks,
such as image classification and semantic segmentation, without requiring
significant architectural changes, unlike transformers and CNNs. It is able to
meet or exceed several accuracy benchmarks while training on a single GPU. For
instance, it achieves state-of-the-art accuracy on five EMNIST datasets,
outperforms CNNs and transformers in ImageNet-1K (64$\times$64 images), and
achieves an mIoU of 75.32 % on Cityscapes validation set, while using less than
one-fifth the number parameters and half the GPU RAM of comparable CNNs or
transformers. Our experiments show that while the convolutional elements of
neural architectures exploit the shift-invariance property of images, new types
of layers (e.g., wavelet transform) can exploit additional properties of
images, such as scale-invariance and finite spatial extents of objects.
- Abstract(参考訳): ニューラルネットワークの画像解析タスクを一般化する能力の高まりは、パラメータやレイヤの数の増加、データセットのサイズ、トレーニングとテストの計算、gpu ramといったコストがかかっている。
我々は、リソースを少なくしながら、同時代のトランスフォーマーや畳み込みニューラルネットワーク(CNN)と同等に一般化できる新しいアーキテクチャ、WaveMix-Liteを導入する。
WaveMix-Liteは2次元離散ウェーブレット変換を用いて画素の空間情報を効率的に混合する。
wavemix-liteは多彩でスケーラブルなアーキテクチャフレームワークで、画像分類やセマンティクスセグメンテーションなど、トランスフォーマーやcnnとは異なり、アーキテクチャの変更を必要とせずに、複数のビジョンタスクに使用できる。
単一のgpuでトレーニングしながら、複数の精度ベンチマークを満たしたり、超えたりすることができる。
例えば、5つのemnistデータセットで最先端の精度を達成し、imagenet-1k(64$\times$64イメージ)でcnnとtransformersを上回り、cityscapes validation setで75.32 %のmiouを達成し、同等のcnnやtransformersのgpuramの5分の1以下を使用した。
実験の結果,ニューラルアーキテクチャの畳み込み要素は画像のシフト不変性を利用するが,新しいタイプの層(ウェーブレット変換など)は物体のスケール不変性や有限空間範囲といった画像のさらなる特性を利用することができることがわかった。
関連論文リスト
- WaveMixSR-V2: Enhancing Super-resolution with Higher Efficiency [4.093503153499691]
本稿では,従来の畳み込み層をピクセルシャッフル操作に置き換えることで,WaveMixSRアーキテクチャの拡張版を提案する。
我々の実験は、拡張モデルであるWaveMixSR-V2が、複数の超解像タスクにおいて、他のアーキテクチャよりも優れていることを示した。
論文 参考訳(メタデータ) (2024-09-16T04:16:52Z) - WiNet: Wavelet-based Incremental Learning for Efficient Medical Image Registration [68.25711405944239]
深部画像登録は異常な精度と高速な推測を示した。
近年の進歩は、粗大から粗大の方法で密度変形場を推定するために、複数のカスケードまたはピラミッドアーキテクチャを採用している。
本稿では,様々なスケールにわたる変位/速度場に対して,スケールワイブレット係数を漸進的に推定するモデル駆動WiNetを提案する。
論文 参考訳(メタデータ) (2024-07-18T11:51:01Z) - Leveraging Neural Radiance Field in Descriptor Synthesis for Keypoints Scene Coordinate Regression [1.2974519529978974]
本稿では,Neural Radiance Field (NeRF) を用いたキーポイント記述子合成のためのパイプラインを提案する。
新たなポーズを生成してトレーニングされたNeRFモデルに入力して新しいビューを生成することで、当社のアプローチは、データスカース環境でのKSCRの機能を強化します。
提案システムは,最大50%のローカライズ精度向上を実現し,データ合成に要するコストをわずかに抑えることができた。
論文 参考訳(メタデータ) (2024-03-15T13:40:37Z) - Dynamic Frame Interpolation in Wavelet Domain [57.25341639095404]
ビデオフレームは、より流動的な視覚体験のためにフレームレートを上げることができる、重要な低レベルな計算ビジョンタスクである。
既存の手法は、高度なモーションモデルと合成ネットワークを利用することで大きな成功を収めた。
WaveletVFIは、同様の精度を維持しながら最大40%の計算を削減できるため、他の最先端技術に対してより効率的に処理できる。
論文 参考訳(メタデータ) (2023-09-07T06:41:15Z) - WaveMixSR: A Resource-efficient Neural Network for Image
Super-resolution [2.0477182014909205]
本稿では、WaveMixアーキテクチャに基づく画像超解像のための新しいニューラルネットワーク、WaveMixSRを提案する。
WaveMixSRは、すべてのデータセットで競合性能を達成し、複数の超解像度タスクでBSD100データセットで最先端のパフォーマンスに達する。
論文 参考訳(メタデータ) (2023-07-01T21:25:03Z) - GLEAM: Greedy Learning for Large-Scale Accelerated MRI Reconstruction [50.248694764703714]
アンロールされたニューラルネットワークは、最近最先端の加速MRI再構成を達成した。
これらのネットワークは、物理ベースの一貫性とニューラルネットワークベースの正規化を交互に組み合わせることで、反復最適化アルゴリズムをアンロールする。
我々は,高次元画像設定のための効率的なトレーニング戦略である加速度MRI再構成のためのグレディ・ラーニングを提案する。
論文 参考訳(メタデータ) (2022-07-18T06:01:29Z) - WaveMix: Resource-efficient Token Mixing for Images [2.7188347260210466]
本稿では,空間トークン混合のためのマルチスケール2次元離散ウェーブレット変換(DWT)を用いた代替ニューラルネットワークとしてWaveMixを提案する。
WaveMix は EMNIST Byclass と EMNIST Balanced データセットで State-of-the-art (SOTA) を達成している。
論文 参考訳(メタデータ) (2022-03-07T20:15:17Z) - DS-Net++: Dynamic Weight Slicing for Efficient Inference in CNNs and
Transformers [105.74546828182834]
本稿では,様々な難易度を持つ入力に対して,ネットワークパラメータの一部を適応的にスライスする動的ウェイトスライシングという,ハードウェア効率のよい動的推論方式を示す。
我々は、CNNのフィルタ数とCNNと変換器の多重次元を入力依存的に調整することで、動的スライム可能なネットワーク(DS-Net)と動的スライス可能なネットワーク(DS-Net++)を提案する。
論文 参考訳(メタデータ) (2021-09-21T09:57:21Z) - Wide-band butterfly network: stable and efficient inversion via
multi-frequency neural networks [1.2891210250935143]
広帯域散乱データから逆散乱マップを近似するために,広帯域蝶ネットワーク(WideBNet)と呼ばれるエンドツーエンドのディープラーニングアーキテクチャを導入する。
このアーキテクチャでは、バタフライの分解のような計算調和解析や、クーリー・テューキーFFTアルゴリズムのような伝統的なマルチスケール手法のツールが組み込まれている。
論文 参考訳(メタデータ) (2020-11-24T21:48:43Z) - When Residual Learning Meets Dense Aggregation: Rethinking the
Aggregation of Deep Neural Networks [57.0502745301132]
我々は,グローバルな残差学習と局所的なマイクロセンスアグリゲーションを備えた新しいアーキテクチャであるMicro-Dense Netsを提案する。
我々のマイクロセンスブロックはニューラルアーキテクチャ検索に基づくモデルと統合して性能を向上させることができる。
論文 参考訳(メタデータ) (2020-04-19T08:34:52Z) - Spatial-Spectral Residual Network for Hyperspectral Image
Super-Resolution [82.1739023587565]
ハイパースペクトル画像超解像のための新しいスペクトル空間残差ネットワーク(SSRNet)を提案する。
提案手法は,2次元畳み込みではなく3次元畳み込みを用いて空間スペクトル情報の探索を効果的に行うことができる。
各ユニットでは空間的・時間的分離可能な3次元畳み込みを用いて空間的・スペクトル的な情報を抽出する。
論文 参考訳(メタデータ) (2020-01-14T03:34:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。