論文の概要: Last-iterate convergence analysis of stochastic momentum methods for
neural networks
- arxiv url: http://arxiv.org/abs/2205.14811v1
- Date: Mon, 30 May 2022 02:17:44 GMT
- ステータス: 処理完了
- システム内更新日: 2022-05-31 18:38:19.851181
- Title: Last-iterate convergence analysis of stochastic momentum methods for
neural networks
- Title(参考訳): ニューラルネットワークにおける確率運動量法の終点収束解析
- Authors: Dongpo Xu, Jinlan Liu, Yinghua Lu, Jun Kong, Danilo Mandic
- Abstract要約: 運動量法は、ニューラルネットワークの大規模最適化問題を解決するために用いられる。
人工環境下での運動量測定法の電流収束結果
運動量係数は、既存の時間よりも定数に固定することができる。
- 参考スコア(独自算出の注目度): 3.57214198937538
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The stochastic momentum method is a commonly used acceleration technique for
solving large-scale stochastic optimization problems in artificial neural
networks. Current convergence results of stochastic momentum methods under
non-convex stochastic settings mostly discuss convergence in terms of the
random output and minimum output. To this end, we address the convergence of
the last iterate output (called last-iterate convergence) of the stochastic
momentum methods for non-convex stochastic optimization problems, in a way
conformal with traditional optimization theory. We prove the last-iterate
convergence of the stochastic momentum methods under a unified framework,
covering both stochastic heavy ball momentum and stochastic Nesterov
accelerated gradient momentum. The momentum factors can be fixed to be
constant, rather than time-varying coefficients in existing analyses. Finally,
the last-iterate convergence of the stochastic momentum methods is verified on
the benchmark MNIST and CIFAR-10 datasets.
- Abstract(参考訳): 確率運動量法は,ニューラルネットワークにおける大規模確率最適化問題の解法として広く用いられている。
非凸確率的条件下での確率運動量法の電流収束結果は主にランダム出力と最小出力の収束について議論する。
この目的のために,非凸確率最適化問題に対する確率的モーメント法の最終反復的出力(ラストイテレート収束)の収束を,従来の最適化理論に準拠した方法で解決する。
我々は,確率運動量法の最終定値収束を統一的枠組みの下で証明し,確率的重球運動量と確率的ネステロフ加速勾配運動量の両方をカバーする。
運動量因子は、既存の分析において時間変化係数よりも定数に固定することができる。
最後に、ベンチマークmnistおよびcifar-10データセットで確率的モーメント法のラストイテレート収束を検証した。
関連論文リスト
- PAPAL: A Provable PArticle-based Primal-Dual ALgorithm for Mixed Nash Equilibrium [58.26573117273626]
2プレイヤゼロサム連続ゲームにおける非AL平衡非漸近目的関数について考察する。
連続分布戦略のための粒子ベースアルゴリズムに関する新しい知見を述べる。
論文 参考訳(メタデータ) (2023-03-02T05:08:15Z) - On Almost Sure Convergence Rates of Stochastic Gradient Methods [11.367487348673793]
勾配法で得られるほぼ確実な収束速度が、可能な限り最適な収束速度に任意に近づくことを示す。
非客観的関数に対しては、二乗勾配ノルムの重み付き平均がほぼ確実に収束するだけでなく、ほぼ確実に0となることを示す。
論文 参考訳(メタデータ) (2022-02-09T06:05:30Z) - Convergence and Stability of the Stochastic Proximal Point Algorithm
with Momentum [14.158845925610438]
運動量を持つ勾配近位アルゴリズム(PPA)は、より優れた縮退係数を持つ近位アルゴリズム(PPA)と比較して、近傍への高速収束を可能にすることを示す。
論文 参考訳(メタデータ) (2021-11-11T12:17:22Z) - A Stochastic Newton Algorithm for Distributed Convex Optimization [62.20732134991661]
均質な分散凸最適化のためのNewtonアルゴリズムを解析し、各マシンが同じ人口目標の勾配を計算する。
提案手法は,既存の手法と比較して,性能を損なうことなく,必要な通信ラウンドの数,頻度を低減できることを示す。
論文 参考訳(メタデータ) (2021-10-07T17:51:10Z) - Momentum Accelerates the Convergence of Stochastic AUPRC Maximization [80.8226518642952]
高精度リコール曲線(AUPRC)に基づく領域の最適化について検討し,不均衡なタスクに広く利用されている。
我々は、$O (1/epsilon4)$のより優れた反復による、$epsilon$定常解を見つけるための新しい運動量法を開発する。
また,O(1/epsilon4)$と同じ複雑さを持つ適応手法の新たなファミリを設計し,実際により高速な収束を享受する。
論文 参考訳(メタデータ) (2021-07-02T16:21:52Z) - On the Convergence of Stochastic Extragradient for Bilinear Games with
Restarted Iteration Averaging [96.13485146617322]
本稿では, ステップサイズが一定であるSEG法の解析を行い, 良好な収束をもたらす手法のバリエーションを示す。
平均化で拡張した場合、SEGはナッシュ平衡に確実に収束し、スケジュールされた再起動手順を組み込むことで、その速度が確実に加速されることを証明した。
論文 参考訳(メタデータ) (2021-06-30T17:51:36Z) - Escaping Saddle Points Faster with Stochastic Momentum [9.485782209646445]
ディープネットワークでは、モーメントは収束時間を大幅に改善しているように見える。
我々は,SGDを高速に回避できるため,運動量が深度トレーニングを改善することを示す。
また、理想運動量パラメータの選択方法を示す。
論文 参考訳(メタデータ) (2021-06-05T23:34:02Z) - Stochastic optimization with momentum: convergence, fluctuations, and
traps avoidance [0.0]
本稿では,重球法,ネステロフ加速勾配法(S-NAG),広く使用されているアダム法など,勾配勾配勾配のいくつかの変種を統一する一般最適化手法について検討する。
この回避は、非自明な常微分方程式のノイズ離散化として研究される。
論文 参考訳(メタデータ) (2020-12-07T19:14:49Z) - A New Accelerated Stochastic Gradient Method with Momentum [4.967897656554012]
運動量(Sgdm)による勾配降下は、繰り返し時間とともに指数関数的に減衰する重みを使い、運動量項を生成する。
本研究では,指数関数的減衰重みと逆比例分解重みの両方が領域に最適化されるパラメータの移動方向のばらつきを制限することができる理論収束特性解析を行う。
論文 参考訳(メタデータ) (2020-05-31T03:04:32Z) - Stochastic Optimization with Heavy-Tailed Noise via Accelerated Gradient
Clipping [69.9674326582747]
そこで本研究では,重み付き分散雑音を用いたスムーズな凸最適化のための,クリップ付きSSTMと呼ばれる新しい1次高速化手法を提案する。
この場合、最先端の結果を上回る新たな複雑さが証明される。
本研究は,SGDにおいて,ノイズに対する光細かな仮定を伴わずにクリッピングを施した最初の非自明な高確率複雑性境界を導出した。
論文 参考訳(メタデータ) (2020-05-21T17:05:27Z) - Optimization with Momentum: Dynamical, Control-Theoretic, and Symplectic
Perspectives [97.16266088683061]
この論文は、運動量に基づく最適化アルゴリズムにおいてシンプレクティックな離散化スキームが重要であることを厳格に証明している。
これは加速収束を示すアルゴリズムの特性を提供する。
論文 参考訳(メタデータ) (2020-02-28T00:32:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。