Skyrmion Helicity: Quantization and Quantum Tunneling Effects
- URL: http://arxiv.org/abs/2205.15155v1
- Date: Mon, 30 May 2022 14:59:52 GMT
- Title: Skyrmion Helicity: Quantization and Quantum Tunneling Effects
- Authors: Christina Psaroudaki and Christos Panagopoulos
- Abstract summary: We derive the quantization of magnetic helicity in the solid-state.
We demonstrate macroscopic quantum tunneling, coherence, and oscillation for a skyrmion spin texture stabilized in frustrated magnets.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We derive the quantization of magnetic helicity in the solid-state and
demonstrate tunable macroscopic quantum tunneling, coherence, and oscillation
for a skyrmion spin texture stabilized in frustrated magnets. We also discuss
the parameter space for the experimental realization of quantum effects.
Typically, for a skyrmion of 5 nm radius, quantum tunneling between two
macroscopic states with distinct helicities occurs with an inverse escape rate
within seconds below 100 mK, and an energy splitting in the MHz regime.
Feasibility of quantum tunneling of an ensemble of magnetic spins inspires new
platforms for quantum operations utilizing topologically protected chiral spin
configurations.
Related papers
- Magnon-Skyrmion Hybrid Quantum Systems: Tailoring Interactions via Magnons [0.22436328017044366]
We propose and analyze a magnon-skyrmion hybrid quantum system, consisting of a micromagnet and nearby magnetic skyrmions.
We show that with this hybrid setup it is possible to induce magnon-mediated nonreciprocal interactions and responses between distant skyrmion qubits or between skyrmion qubits and other quantum systems like superconducting qubits.
arXiv Detail & Related papers (2024-04-15T00:19:23Z) - Construction of topological quantum magnets from atomic spins on surfaces [6.884621917906393]
We demonstrate topological quantum Heisenberg spin lattices, engineered with spin chains and two-dimensional spin arrays in a scanning tunnelling microscope (STM)
Our results provide an important bottom-up approach to simulating exotic quantum many-body phases of interacting spins.
arXiv Detail & Related papers (2024-03-21T05:41:20Z) - Quantum error mitigation for Fourier moment computation [49.1574468325115]
This paper focuses on the computation of Fourier moments within the context of a nuclear effective field theory on superconducting quantum hardware.
The study integrates echo verification and noise renormalization into Hadamard tests using control reversal gates.
The analysis, conducted using noise models, reveals a significant reduction in noise strength by two orders of magnitude.
arXiv Detail & Related papers (2024-01-23T19:10:24Z) - Finite Pulse-Time Effects in Long-Baseline Quantum Clock Interferometry [45.73541813564926]
We study the interplay of the quantum center-of-mass $-$ that can become delocalized $-$ together with the internal clock transitions.
We show at the example of a Gaussian laser beam that the proposed quantum-clock interferometers are stable against perturbations from varying optical fields.
arXiv Detail & Related papers (2023-09-25T18:00:03Z) - All-Optical Nuclear Quantum Sensing using Nitrogen-Vacancy Centers in
Diamond [52.77024349608834]
Microwave or radio-frequency driving poses a significant limitation for miniaturization, energy-efficiency and non-invasiveness of quantum sensors.
We overcome this limitation by demonstrating a purely optical approach to coherent quantum sensing.
Our results pave the way for highly compact quantum sensors to be employed for magnetometry or gyroscopy applications.
arXiv Detail & Related papers (2022-12-14T08:34:11Z) - Tuning long-range fermion-mediated interactions in cold-atom quantum
simulators [68.8204255655161]
Engineering long-range interactions in cold-atom quantum simulators can lead to exotic quantum many-body behavior.
Here, we propose several tuning knobs, accessible in current experimental platforms, that allow to further control the range and shape of the mediated interactions.
arXiv Detail & Related papers (2022-03-31T13:32:12Z) - Quantum simulation of antiferromagnetic Heisenberg chain with
gate-defined quantum dots [0.0]
Magnetic phases naturally arise in the Mott-insulator regime of the Fermi-Hubbard model.
We show the quantum simulation of magnetism in the Mott-insulator regime with a linear quantum-dot array.
arXiv Detail & Related papers (2021-03-15T09:45:02Z) - Spin Entanglement and Magnetic Competition via Long-range Interactions
in Spinor Quantum Optical Lattices [62.997667081978825]
We study the effects of cavity mediated long range magnetic interactions and optical lattices in ultracold matter.
We find that global interactions modify the underlying magnetic character of the system while introducing competition scenarios.
These allow new alternatives toward the design of robust mechanisms for quantum information purposes.
arXiv Detail & Related papers (2020-11-16T08:03:44Z) - Probing the coherence of solid-state qubits at avoided crossings [51.805457601192614]
We study the quantum dynamics of paramagnetic defects interacting with a nuclear spin bath at avoided crossings.
The proposed theoretical approach paves the way to designing the coherence properties of spin qubits from first principles.
arXiv Detail & Related papers (2020-10-21T15:37:59Z) - Spin shuttling in a silicon double quantum dot [0.0]
We study a minimal version of spin shuttling between two quantum dots.
Spin-orbit interaction and the Zeeman effect in an inhomogeneous magnetic field play an important role for spin shuttling.
We find that a spin infidelity as low as $1-F_slesssim 0.002$ with a relatively fast level velocity of $alpha = 600, mu$eV/ns is feasible.
arXiv Detail & Related papers (2020-07-07T16:33:06Z) - Entanglement between Distant Macroscopic Mechanical and Spin Systems [0.0]
Entanglement is a vital property of multipartite quantum systems.
Generation of entanglement between macroscopic and disparate systems is an ongoing effort in quantum science.
arXiv Detail & Related papers (2020-03-25T10:41:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.