Magnon-Skyrmion Hybrid Quantum Systems: Tailoring Interactions via Magnons
- URL: http://arxiv.org/abs/2404.09388v1
- Date: Mon, 15 Apr 2024 00:19:23 GMT
- Title: Magnon-Skyrmion Hybrid Quantum Systems: Tailoring Interactions via Magnons
- Authors: Xue-Feng Pan, Peng-Bo Li, Xin-Lei Hei, Xichao Zhang, Masahito Mochizuki, Fu-Li Li, Franco Nori,
- Abstract summary: We propose and analyze a magnon-skyrmion hybrid quantum system, consisting of a micromagnet and nearby magnetic skyrmions.
We show that with this hybrid setup it is possible to induce magnon-mediated nonreciprocal interactions and responses between distant skyrmion qubits or between skyrmion qubits and other quantum systems like superconducting qubits.
- Score: 0.22436328017044366
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Coherent and dissipative interactions between different quantum systems are essential for the construction of hybrid quantum systems and the investigation of novel quantum phenomena. Here, we propose and analyze a magnon-skyrmion hybrid quantum system, consisting of a micromagnet and nearby magnetic skyrmions. We predict a strong coupling mechanism between the magnonic mode of the micromagnet and the quantized helicity degree of freedom of the skyrmion. We show that with this hybrid setup it is possible to induce magnon-mediated nonreciprocal interactions and responses between distant skyrmion qubits or between skyrmion qubits and other quantum systems like superconducting qubits. This work provides a quantum platform for the investigation of diverse quantum effects and quantum information processing with magnetic microstructures.
Related papers
- The multimode conditional quantum Entropy Power Inequality and the squashed entanglement of the extreme multimode bosonic Gaussian channels [53.253900735220796]
Inequality determines the minimum conditional von Neumann entropy of the output of the most general linear mixing of bosonic quantum modes.
Bosonic quantum systems constitute the mathematical model for the electromagnetic radiation in the quantum regime.
arXiv Detail & Related papers (2024-10-18T13:59:50Z) - Skyrmion-mechanical hybrid quantum systems: Manipulation of skyrmion qubits via phonons [4.057124226007073]
We propose a hybrid quantum setup with skyrmion qubits strongly coupled to nanomechanical cantilevers via magnetic coupling.
A linear drive is utilized to achieve the modulation of the stiffness coefficient of the cantilever.
We also consider the case of a topological resonator array, which allows us to study interactions between skyrmion qubits and topological phonon band structure.
arXiv Detail & Related papers (2024-04-15T00:22:09Z) - Skyrmion Qubits: Challenges For Future Quantum Computing Applications [0.0]
Magnetic nano-skyrmions develop quantized helicity excitations.
Quantum tunneling between nano-skyrmions possessing distinct helicities is indicative of the quantum nature of these particles.
This Perspective aims to discuss developments and challenges in this new research avenue in quantum magnetism and quantum information.
arXiv Detail & Related papers (2024-01-08T09:51:14Z) - Stability of a quantum skyrmion: projective measurements and the quantum
Zeno effect [0.0]
Magnetic skyrmions are vortex-like quasiparticles characterized by long lifetime and remarkable topological properties.
We theoretically analyze the dynamics of a quantum skyrmion subject to local projective measurements.
We show that by performing repetitive measurements on a quantum skyrmion, it can be completely stabilized through an analog of the quantum Zeno effect.
arXiv Detail & Related papers (2023-08-21T20:03:25Z) - Tunable photon-mediated interactions between spin-1 systems [68.8204255655161]
We show how to harness multi-level emitters with several optical transitions to engineer photon-mediated interactions between effective spin-1 systems.
Our results expand the quantum simulation toolbox available in cavity QED and quantum nanophotonic setups.
arXiv Detail & Related papers (2022-06-03T14:52:34Z) - Tuning long-range fermion-mediated interactions in cold-atom quantum
simulators [68.8204255655161]
Engineering long-range interactions in cold-atom quantum simulators can lead to exotic quantum many-body behavior.
Here, we propose several tuning knobs, accessible in current experimental platforms, that allow to further control the range and shape of the mediated interactions.
arXiv Detail & Related papers (2022-03-31T13:32:12Z) - Skyrmion Qubits: A New Class of Quantum Logic Elements Based on
Nanoscale Magnetization [0.0]
We introduce a new class of primitive building blocks for realizing quantum logic elements based on nanoscale magnetization textures called skyrmions.
In a skyrmion qubit, information is stored in the quantum degree of helicity, and the logical states can be adjusted by electric and magnetic fields.
arXiv Detail & Related papers (2021-08-04T18:00:04Z) - Simulation of Collective Neutrino Oscillations on a Quantum Computer [117.44028458220427]
We present the first simulation of a small system of interacting neutrinos using current generation quantum devices.
We introduce a strategy to overcome limitations in the natural connectivity of the qubits and use it to track the evolution of entanglement in real-time.
arXiv Detail & Related papers (2021-02-24T20:51:25Z) - Quantum engineering with hybrid magnonics systems and materials [0.04547972388037025]
This review focuses on the current frontiers with respect to utilizing magnetic excitatons or magnons for novel quantum functionality.
We start our discussion with circuit-based hybrid magnonic systems, which are coupled with microwave photons and acoustic phonons.
Next we highlight new opportunities for understanding the interactions between magnons and nitrogen-vacancy centers for quantum sensing and implementing quantum interconnects.
arXiv Detail & Related papers (2021-02-05T15:12:56Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - Spin Entanglement and Magnetic Competition via Long-range Interactions
in Spinor Quantum Optical Lattices [62.997667081978825]
We study the effects of cavity mediated long range magnetic interactions and optical lattices in ultracold matter.
We find that global interactions modify the underlying magnetic character of the system while introducing competition scenarios.
These allow new alternatives toward the design of robust mechanisms for quantum information purposes.
arXiv Detail & Related papers (2020-11-16T08:03:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.