論文の概要: A Combination of Deep Neural Networks and K-Nearest Neighbors for Credit
Card Fraud Detection
- arxiv url: http://arxiv.org/abs/2205.15300v1
- Date: Fri, 27 May 2022 10:33:27 GMT
- ステータス: 処理完了
- システム内更新日: 2022-05-31 14:10:07.140469
- Title: A Combination of Deep Neural Networks and K-Nearest Neighbors for Credit
Card Fraud Detection
- Title(参考訳): クレジットカード不正検出のためのディープニューラルネットワークとK-Nearest隣人の組み合わせ
- Authors: Dinara Rzayeva, Saber Malekzadeh
- Abstract要約: 本稿では, アンダーサンプリングアルゴリズム, K-nearest Neighbor Algorithm (KNN) と Deep Neural Network (KNN) を含む新しい手法を実装した。
性能評価の結果、DNNモデルは正確な精度(98.12%)を示し、提示された手法が不正取引を検出する優れた能力を示している。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Detection of a Fraud transaction on credit cards became one of the major
problems for financial institutions, organizations and companies. As the global
financial system is highly connected to non-cash transactions and online
operations fraud makers invent more effective ways to access customers'
finances. The main problem in credit card fraud detection is that the number of
fraud transactions is significantly lower than genuine ones. The aim of the
paper is to implement new techniques, which contains of under-sampling
algorithms, K-nearest Neighbor Algorithm (KNN) and Deep Neural Network (KNN) on
new obtained dataset. The performance evaluation showed that DNN model gives
precise high accuracy (98.12%), which shows the good ability of presented
method to detect fraudulent transactions.
- Abstract(参考訳): クレジットカードによる不正取引の検出は、金融機関、組織、企業にとって大きな問題の1つとなった。
グローバル・ファイナンス・システムは非キャッシュ取引に強く結びついており、オンライン・オペレーション・詐欺のメーカーは顧客の財務情報にアクセスするためのより効果的な方法を発明している。
クレジットカード詐欺検出の大きな問題は、不正取引の数が本物より大幅に少ないことである。
本研究の目的は,新しいデータセット上に,アンダーサンプリングアルゴリズム,K-nearest Neighbor Algorithm(KNN),Deep Neural Network(KNN)を含む新しい手法を実装することである。
性能評価の結果、DNNモデルは正確な精度(98.12%)を示し、提案手法が不正取引を検出する優れた能力を示している。
関連論文リスト
- Heterogeneous Graph Auto-Encoder for CreditCard Fraud Detection [0.7864304771129751]
本稿では、金融データの異種グラフ表現に注意機構を応用したグラフニューラルネットワーク(GNN)を用いたクレジットカード不正検出手法を提案する。
提案モデルはグラフセージやFI-GRLなどのベンチマークアルゴリズムより優れており、AUC-PRが0.89、F1スコアが0.81である。
論文 参考訳(メタデータ) (2024-10-10T17:05:27Z) - Credit Card Fraud Detection: A Deep Learning Approach [4.0361765428523135]
不正なクレジットカード取引により、多くの機関や個人によって実質的な金額が失われている。
本稿では,偽陽性率が非常に低い不正カバレッジを得るために,Deep Learningアルゴリズムを理解し,実装することを目的とする。
論文 参考訳(メタデータ) (2024-09-20T11:13:16Z) - Credit Card Fraud Detection in the Nigerian Financial Sector: A Comparison of Unsupervised TensorFlow-Based Anomaly Detection Techniques, Autoencoders and PCA Algorithm [0.0]
クレジットカード詐欺はナイジェリアの金融セクターにおける国家的懸念の主な原因である。
本稿では,人間の介入から完全に独立して働くことを想定した2つの不正検出技術の有効性を比較することを目的とする。
論文 参考訳(メタデータ) (2024-03-08T21:22:05Z) - Enhancing Credit Card Fraud Detection A Neural Network and SMOTE Integrated Approach [4.341096233663623]
本研究では、ニューラルネットワーク(NN)とSMOTE(Synthet ic Minority Over-Sampling Technique)を組み合わせて検出性能を向上させる革新的な手法を提案する。
この研究は、クレジットカード取引データに固有の不均衡に対処し、堅牢で正確な不正検出のための技術的進歩に焦点を当てた。
論文 参考訳(メタデータ) (2024-02-27T02:26:04Z) - Credit Card Fraud Detection with Subspace Learning-based One-Class
Classification [18.094622095967328]
1クラス分類(OCC)アルゴリズムは、不均衡なデータ分散を扱うのに優れている。
これらのアルゴリズムは、部分空間学習をデータ記述に統合する。
これらのアルゴリズムは、OCCに最適化された低次元の部分空間にデータを変換する。
論文 参考訳(メタデータ) (2023-09-26T12:26:28Z) - Transaction Fraud Detection via an Adaptive Graph Neural Network [64.9428588496749]
本稿では,アダプティブサンプリングとアグリゲーションに基づくグラフニューラルネットワーク(ASA-GNN)を提案する。
ノイズの多いノードをフィルタリングし、不正なノードを補うために、隣のサンプリング戦略を実行する。
3つのファイナンシャルデータセットの実験により,提案手法のASA-GNNは最先端のデータセットよりも優れていることが示された。
論文 参考訳(メタデータ) (2023-07-11T07:48:39Z) - Feature-Level Fusion of Super-App and Telecommunication Alternative Data
Sources for Credit Card Fraud Detection [106.33204064461802]
クレジットカード不正を早期に検出するための,スーパーアプリ顧客情報,携帯電話回線データ,従来型の信用リスク変数を融合した機能レベルの有効性について検討する。
クレジットカードのデジタルプラットフォームデータベースから約9万人のユーザを対象に,我々のアプローチを評価した。
論文 参考訳(メタデータ) (2021-11-05T19:10:35Z) - Relational Graph Neural Networks for Fraud Detection in a Super-App
environment [53.561797148529664]
スーパーアプリケーションの金融サービスにおける不正行為防止のための関係グラフ畳み込みネットワーク手法の枠組みを提案する。
我々は,グラフニューラルネットワークの解釈可能性アルゴリズムを用いて,ユーザの分類タスクに対する最も重要な関係を判定する。
以上の結果から,Super-Appの代替データと高接続性で得られるインタラクションを利用するモデルには,付加価値があることが示唆された。
論文 参考訳(メタデータ) (2021-07-29T00:02:06Z) - Enhancing Graph Neural Network-based Fraud Detectors against Camouflaged
Fraudsters [78.53851936180348]
近年の実証研究,すなわち特徴カモフラージュと関係カモフラージュの2種類のカモフラージュを紹介した。
既存のGNNはこれらの2つのカモフラージュに対処していない。
カモフラージュ抵抗型GNN(CARE-GNN)と呼ばれる新しいモデルを提案し、カモフラージュに対する3つのユニークなモジュールを用いたGNN集約プロセスを強化する。
論文 参考訳(メタデータ) (2020-08-19T22:33:12Z) - Bayesian Optimization with Machine Learning Algorithms Towards Anomaly
Detection [66.05992706105224]
本稿では,ベイズ最適化手法を用いた効果的な異常検出フレームワークを提案する。
ISCX 2012データセットを用いて検討したアルゴリズムの性能を評価する。
実験結果から, 精度, 精度, 低コストアラームレート, リコールの観点から, 提案手法の有効性が示された。
論文 参考訳(メタデータ) (2020-08-05T19:29:35Z) - DFraud3- Multi-Component Fraud Detection freeof Cold-start [50.779498955162644]
コールドスタート(Cold-start)は、新しいユーザの認証に検出システムが失敗したことを指す重要な問題である。
本稿では,各コンポーネントに固有の表現を可能にする異種情報ネットワーク (HIN) としてレビューシステムをモデル化する。
HINとグラフ誘導はカモフラージュ問題(本物のレビュー付き詐欺師)に対処するのに役立ち、これはコールドスタートと組み合わされた場合、すなわち真に最初のレビューを持つ新しい詐欺師がより深刻であることが示されている。
論文 参考訳(メタデータ) (2020-06-10T08:20:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。