論文の概要: Credit Card Fraud Detection in the Nigerian Financial Sector: A Comparison of Unsupervised TensorFlow-Based Anomaly Detection Techniques, Autoencoders and PCA Algorithm
- arxiv url: http://arxiv.org/abs/2407.08758v1
- Date: Fri, 8 Mar 2024 21:22:05 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-22 13:48:17.403842
- Title: Credit Card Fraud Detection in the Nigerian Financial Sector: A Comparison of Unsupervised TensorFlow-Based Anomaly Detection Techniques, Autoencoders and PCA Algorithm
- Title(参考訳): ナイジェリアの金融セクターにおけるクレジットカード不正検出:教師なしTensorFlowベースの異常検出手法、オートエンコーダ、PCAアルゴリズムの比較
- Authors: Jennifer Onyeama,
- Abstract要約: クレジットカード詐欺はナイジェリアの金融セクターにおける国家的懸念の主な原因である。
本稿では,人間の介入から完全に独立して働くことを想定した2つの不正検出技術の有効性を比較することを目的とする。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Credit card fraud is a major cause of national concern in the Nigerian financial sector, affecting hundreds of transactions per second and impacting international ecommerce negatively. Despite the rapid spread and adoption of online marketing, millions of Nigerians are prevented from transacting in several countries with local credit cards due to bans and policies directed at restricting credit card fraud. Presently, a myriad of technologies exist to detect fraudulent transactions, a few of which are adopted by Nigerian financial institutions to proactively manage the situation. Fraud detection allows institutions to restrict offenders from networks and with a centralized banking identity management system, such as the Bank Verification Number used by the Central Bank of Nigeria, offenders who may have stolen other identities can be backtraced and their bank accounts frozen. This paper aims to compare the effectiveness of two fraud detection technologies that are projected to work fully independent of human intervention to possibly predict and detect fraudulent credit card transactions. Autoencoders as an unsupervised tensorflow based anomaly detection technique generally offers greater performance in dimensionality reduction than the Principal Component Analysis, and this theory was tested out on Nigerian credit card transaction data. Results demonstrate that autoencoders are better suited to analyzing complex and extensive datasets and offer more reliable results with minimal mislabeling than the PCA algorithm.
- Abstract(参考訳): クレジットカード詐欺はナイジェリアの金融セクターにおける国家的懸念の大きな原因であり、毎秒数百件の取引に影響し、国際的なeコマースに悪影響を及ぼしている。
オンラインマーケティングの急速な普及と普及にもかかわらず、何百万人ものナイジェリア人が、クレジットカード詐欺の禁止や規制により、地元のクレジットカードを持つ国で取引を禁止されている。
現在、不正取引を検出する技術は無数にあり、一部はナイジェリアの金融機関が積極的に状況を管理するために採用している。
不正検出により、組織は犯罪者をネットワークから制限することができ、ナイジェリア中央銀行が使用した銀行認証番号のような中央集権的な銀行ID管理システムにより、他の身元を盗んだ可能性のある犯罪者は引き戻され、銀行口座は凍結される。
本稿では,不正なクレジットカード取引を予測・検出するために,人間の介入から完全に独立して機能する2つの不正検出技術の有効性を比較することを目的とする。
教師なしテンソルフローに基づく異常検出手法としてのオートエンコーダは、一般的に主成分分析よりも次元の低減性能が高く、この理論はナイジェリアのクレジットカード取引データで検証された。
その結果、オートエンコーダは複雑で広範なデータセットを解析するのに適しており、PCAアルゴリズムよりも最小限のミスラベルで信頼性の高い結果が得られることを示した。
関連論文リスト
- Credit Card Fraud Detection: A Deep Learning Approach [4.0361765428523135]
不正なクレジットカード取引により、多くの機関や個人によって実質的な金額が失われている。
本稿では,偽陽性率が非常に低い不正カバレッジを得るために,Deep Learningアルゴリズムを理解し,実装することを目的とする。
論文 参考訳(メタデータ) (2024-09-20T11:13:16Z) - Transparency and Privacy: The Role of Explainable AI and Federated
Learning in Financial Fraud Detection [0.9831489366502302]
本研究は,これらの課題に対処するために,FL(Federated Learning)とXAI(Explainable AI)を用いた新しいアプローチを提案する。
FLは、金融機関が顧客データを直接共有することなく、不正取引を検出するモデルを協調的に訓練することを可能にする。
XAIは、モデルによってなされた予測が人間の専門家によって理解され解釈され、システムに透明性と信頼のレイヤを追加することを保証します。
論文 参考訳(メタデータ) (2023-12-20T18:26:59Z) - Transaction Fraud Detection via an Adaptive Graph Neural Network [64.9428588496749]
本稿では,アダプティブサンプリングとアグリゲーションに基づくグラフニューラルネットワーク(ASA-GNN)を提案する。
ノイズの多いノードをフィルタリングし、不正なノードを補うために、隣のサンプリング戦略を実行する。
3つのファイナンシャルデータセットの実験により,提案手法のASA-GNNは最先端のデータセットよりも優れていることが示された。
論文 参考訳(メタデータ) (2023-07-11T07:48:39Z) - Blockchain Large Language Models [65.7726590159576]
本稿では,異常なブロックチェーントランザクションを検出するための動的,リアルタイムなアプローチを提案する。
提案するツールであるBlockGPTは、ブロックチェーンアクティビティのトレース表現を生成し、大規模な言語モデルをスクラッチからトレーニングして、リアルタイム侵入検出システムとして機能させる。
論文 参考訳(メタデータ) (2023-04-25T11:56:18Z) - A Combination of Deep Neural Networks and K-Nearest Neighbors for Credit
Card Fraud Detection [0.0]
本稿では, アンダーサンプリングアルゴリズム, K-nearest Neighbor Algorithm (KNN) と Deep Neural Network (KNN) を含む新しい手法を実装した。
性能評価の結果、DNNモデルは正確な精度(98.12%)を示し、提示された手法が不正取引を検出する優れた能力を示している。
論文 参考訳(メタデータ) (2022-05-27T10:33:27Z) - Benchmarking Quality-Dependent and Cost-Sensitive Score-Level Multimodal
Biometric Fusion Algorithms [58.156733807470395]
本稿では,BioSecure DS2 (Access Control) 評価キャンペーンの枠組み内で実施したベンチマーク研究について報告する。
キャンペーンは、約500人の中規模施設における物理的アクセス制御の適用を目標とした。
我々の知る限りでは、これは品質ベースのマルチモーダル融合アルゴリズムをベンチマークする最初の試みである。
論文 参考訳(メタデータ) (2021-11-17T13:39:48Z) - Feature-Level Fusion of Super-App and Telecommunication Alternative Data
Sources for Credit Card Fraud Detection [106.33204064461802]
クレジットカード不正を早期に検出するための,スーパーアプリ顧客情報,携帯電話回線データ,従来型の信用リスク変数を融合した機能レベルの有効性について検討する。
クレジットカードのデジタルプラットフォームデータベースから約9万人のユーザを対象に,我々のアプローチを評価した。
論文 参考訳(メタデータ) (2021-11-05T19:10:35Z) - Relational Graph Neural Networks for Fraud Detection in a Super-App
environment [53.561797148529664]
スーパーアプリケーションの金融サービスにおける不正行為防止のための関係グラフ畳み込みネットワーク手法の枠組みを提案する。
我々は,グラフニューラルネットワークの解釈可能性アルゴリズムを用いて,ユーザの分類タスクに対する最も重要な関係を判定する。
以上の結果から,Super-Appの代替データと高接続性で得られるインタラクションを利用するモデルには,付加価値があることが示唆された。
論文 参考訳(メタデータ) (2021-07-29T00:02:06Z) - Deep Learning Methods for Credit Card Fraud Detection [3.069837038535869]
本稿では,クレジットカード詐欺検出問題の深層学習手法について検討する。
パフォーマンスを3つの金融データセット上のさまざまな機械学習アルゴリズムと比較する。
実験の結果,従来の機械学習モデルに対する深層学習手法の性能が向上した。
論文 参考訳(メタデータ) (2020-12-07T14:48:58Z) - Fraud Detection using Data-Driven approach [0.0]
最初のオンラインバンキングは1980年に始まった。
インターネットバンキングの利用が絶え間なく増加し、多くのオンライン取引も不正行為を増やした。
本研究では,顧客行動に適応した効率的な不正検出モデルの構築を目的とする。
論文 参考訳(メタデータ) (2020-09-08T20:58:51Z) - DFraud3- Multi-Component Fraud Detection freeof Cold-start [50.779498955162644]
コールドスタート(Cold-start)は、新しいユーザの認証に検出システムが失敗したことを指す重要な問題である。
本稿では,各コンポーネントに固有の表現を可能にする異種情報ネットワーク (HIN) としてレビューシステムをモデル化する。
HINとグラフ誘導はカモフラージュ問題(本物のレビュー付き詐欺師)に対処するのに役立ち、これはコールドスタートと組み合わされた場合、すなわち真に最初のレビューを持つ新しい詐欺師がより深刻であることが示されている。
論文 参考訳(メタデータ) (2020-06-10T08:20:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。