PolypConnect: Image inpainting for generating realistic gastrointestinal
tract images with polyps
- URL: http://arxiv.org/abs/2205.15413v1
- Date: Mon, 30 May 2022 20:20:19 GMT
- Title: PolypConnect: Image inpainting for generating realistic gastrointestinal
tract images with polyps
- Authors: Jan Andre Fagereng, Vajira Thambawita, Andrea M. Stor{\aa}s, Sravanthi
Parasa, Thomas de Lange, P{\aa}l Halvorsen, Michael A. Riegler
- Abstract summary: Early identification of a polyp in the lower gastrointestinal (GI) tract can lead to prevention of life-threatening colorectal cancer.
CAD systems to detect polyps can improve detection accuracy and efficiency and save the time of the domain experts called endoscopists.
We propose the PolypConnect pipeline, which can convert non-polyp images into polyp images to increase the size of training datasets for training.
- Score: 1.7915968197912802
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Early identification of a polyp in the lower gastrointestinal (GI) tract can
lead to prevention of life-threatening colorectal cancer. Developing
computer-aided diagnosis (CAD) systems to detect polyps can improve detection
accuracy and efficiency and save the time of the domain experts called
endoscopists. Lack of annotated data is a common challenge when building CAD
systems. Generating synthetic medical data is an active research area to
overcome the problem of having relatively few true positive cases in the
medical domain. To be able to efficiently train machine learning (ML) models,
which are the core of CAD systems, a considerable amount of data should be
used. In this respect, we propose the PolypConnect pipeline, which can convert
non-polyp images into polyp images to increase the size of training datasets
for training. We present the whole pipeline with quantitative and qualitative
evaluations involving endoscopists. The polyp segmentation model trained using
synthetic data, and real data shows a 5.1% improvement of mean intersection
over union (mIOU), compared to the model trained only using real data. The
codes of all the experiments are available on GitHub to reproduce the results.
Related papers
- Polyp-E: Benchmarking the Robustness of Deep Segmentation Models via Polyp Editing [32.30835026874521]
In daily clinical practice, clinicians exhibit robustness in identifying polyps with both location and size variations.
It is uncertain if deep segmentation models can achieve comparable robustness in automated colonoscopic analysis.
We focus on evaluating the robustness of segmentation models on the polyps with various attributes and healthy samples.
arXiv Detail & Related papers (2024-10-22T06:30:37Z) - PolypDB: A Curated Multi-Center Dataset for Development of AI Algorithms in Colonoscopy [31.54817948734052]
We introduce PolypDB, a large scale publicly available dataset that contains 3934 still polyp images.
The dataset has been developed and verified by a team of 10 gastroenterologists.
We provide a benchmark on each modality using eight popular segmentation methods and six standard benchmark polyp detection methods.
arXiv Detail & Related papers (2024-08-19T05:36:01Z) - ECC-PolypDet: Enhanced CenterNet with Contrastive Learning for Automatic
Polyp Detection [88.4359020192429]
Existing methods either involve computationally expensive context aggregation or lack prior modeling of polyps, resulting in poor performance in challenging cases.
In this paper, we propose the Enhanced CenterNet with Contrastive Learning (ECC-PolypDet), a two-stage training & end-to-end inference framework.
Box-assisted Contrastive Learning (BCL) during training to minimize the intra-class difference and maximize the inter-class difference between foreground polyps and backgrounds, enabling our model to capture concealed polyps.
In the fine-tuning stage, we introduce the IoU-guided Sample Re-weighting
arXiv Detail & Related papers (2024-01-10T07:03:41Z) - Mask-conditioned latent diffusion for generating gastrointestinal polyp
images [2.027538200191349]
This study proposes a conditional DPM framework to generate synthetic GI polyp images conditioned on given segmentation masks.
Our system can generate an unlimited number of high-fidelity synthetic polyp images with the corresponding ground truth masks of polyps.
Results show that the best micro-imagewise IOU of 0.7751 was achieved from DeepLabv3+ when the training data consists of both real data and synthetic data.
arXiv Detail & Related papers (2023-04-11T14:11:17Z) - Lesion-aware Dynamic Kernel for Polyp Segmentation [49.63274623103663]
We propose a lesion-aware dynamic network (LDNet) for polyp segmentation.
It is a traditional u-shape encoder-decoder structure incorporated with a dynamic kernel generation and updating scheme.
This simple but effective scheme endows our model with powerful segmentation performance and generalization capability.
arXiv Detail & Related papers (2023-01-12T09:53:57Z) - Automatic Polyp Segmentation with Multiple Kernel Dilated Convolution
Network [3.1374864575817214]
In this study, we introduce a novel deep learning architecture, named textbfMKDCNet, for automatic polyp segmentation.
Experiments on four publicly available polyp datasets and cell nuclei dataset show that the proposed MKDCNet outperforms the state-of-the-art methods.
MKDCNet can be a strong benchmark for building real-time systems for clinical colonoscopies.
arXiv Detail & Related papers (2022-06-13T15:47:38Z) - Self-Supervised U-Net for Segmenting Flat and Sessile Polyps [63.62764375279861]
Development of colorectal polyps is one of the earliest signs of cancer.
Early detection and resection of polyps can greatly increase survival rate to 90%.
Computer-Aided Diagnosis systems(CADx) has been proposed that detect polyps by processing the colonoscopic videos.
arXiv Detail & Related papers (2021-10-17T09:31:20Z) - Fed-Sim: Federated Simulation for Medical Imaging [131.56325440976207]
We introduce a physics-driven generative approach that consists of two learnable neural modules.
We show that our data synthesis framework improves the downstream segmentation performance on several datasets.
arXiv Detail & Related papers (2020-09-01T19:17:46Z) - PraNet: Parallel Reverse Attention Network for Polyp Segmentation [155.93344756264824]
We propose a parallel reverse attention network (PraNet) for accurate polyp segmentation in colonoscopy images.
We first aggregate the features in high-level layers using a parallel partial decoder (PPD)
In addition, we mine the boundary cues using a reverse attention (RA) module, which is able to establish the relationship between areas and boundary cues.
arXiv Detail & Related papers (2020-06-13T08:13:43Z) - Data Consistent CT Reconstruction from Insufficient Data with Learned
Prior Images [70.13735569016752]
We investigate the robustness of deep learning in CT image reconstruction by showing false negative and false positive lesion cases.
We propose a data consistent reconstruction (DCR) method to improve their image quality, which combines the advantages of compressed sensing and deep learning.
The efficacy of the proposed method is demonstrated in cone-beam CT with truncated data, limited-angle data and sparse-view data, respectively.
arXiv Detail & Related papers (2020-05-20T13:30:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.