論文の概要: Hedging option books using neural-SDE market models
- arxiv url: http://arxiv.org/abs/2205.15991v1
- Date: Tue, 31 May 2022 17:48:18 GMT
- ステータス: 処理完了
- システム内更新日: 2022-06-01 15:37:18.436415
- Title: Hedging option books using neural-SDE market models
- Title(参考訳): ニューラルSDE市場モデルを用いたヘッジオプションブック
- Authors: Samuel N. Cohen, Christoph Reisinger, Sheng Wang
- Abstract要約: ニューラル-SDE市場モデルはブラック-スコルズデルタとデルタ-ベガヘッジよりも時間とともに低いヘッジ誤差が得られることを示す。
さらに、市場モデルを用いたヘッジは、ヘッジとヘッジのヘッジに類似したパフォーマンスをもたらす一方、前者はストレスのある市場期間に頑丈になる傾向にある。
- 参考スコア(独自算出の注目度): 6.319314191226118
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study the capability of arbitrage-free neural-SDE market models to yield
effective strategies for hedging options. In particular, we derive
sensitivity-based and minimum-variance-based hedging strategies using these
models and examine their performance when applied to various option portfolios
using real-world data. Through backtesting analysis over typical and stressed
market periods, we show that neural-SDE market models achieve lower hedging
errors than Black--Scholes delta and delta-vega hedging consistently over time,
and are less sensitive to the tenor choice of hedging instruments. In addition,
hedging using market models leads to similar performance to hedging using
Heston models, while the former tends to be more robust during stressed market
periods.
- Abstract(参考訳): 本研究では, 任意自由なニューラルSDE市場モデルを用いて, ヘッジオプションの効果的な戦略を導出する能力について検討する。
特に,これらのモデルを用いて感度ベースおよび最小分散ベースのヘッジ戦略を導出し,実世界データを用いた様々なオプションポートフォリオに適用した場合の性能を検討する。
典型的な, ストレスのある市場期間のバックテスト分析により, ニューラルSDE市場モデルは, 時間とともに一貫してブラック・スコルズデルタやデルタベガヘッジよりも低いヘッジ誤差を達成し, ヘッジ機器のテナー選択に敏感でないことを示す。
さらに、市場モデルを用いたヘッジは、hedgingとhedgingモデルと同様のパフォーマンスをもたらすが、前者は、ストレスのある市場期間中により堅牢になる傾向がある。
関連論文リスト
- Margin Matching Preference Optimization: Enhanced Model Alignment with Granular Feedback [64.67540769692074]
人間のフィードバックからの強化学習など、アライメント技術で微調整された大規模言語モデル(LLM)は、これまでで最も有能なAIシステムの開発に役立っている。
マージンマッチング選好最適化(MMPO)と呼ばれる手法を導入し、相対的な品質マージンを最適化し、LLMポリシーと報酬モデルを改善する。
人間とAIの両方のフィードバックデータによる実験によると、MMPOはMT-benchやRewardBenchといった一般的なベンチマークにおいて、ベースラインメソッドよりも一貫してパフォーマンスが向上している。
論文 参考訳(メタデータ) (2024-10-04T04:56:11Z) - Towards Robust and Efficient Cloud-Edge Elastic Model Adaptation via Selective Entropy Distillation [56.79064699832383]
Cloud-Edge Elastic Model Adaptation (CEMA)パラダイムを確立し、エッジモデルが前方伝播のみを実行するようにします。
CEMAでは,通信負担を軽減するため,不要なサンプルをクラウドにアップロードすることを避けるための2つの基準を考案した。
論文 参考訳(メタデータ) (2024-02-27T08:47:19Z) - Diffusion Variational Autoencoder for Tackling Stochasticity in
Multi-Step Regression Stock Price Prediction [54.21695754082441]
長期的地平線上での多段階の株価予測は、ボラティリティの予測に不可欠である。
多段階の株価予測に対する現在の解決策は、主に単一段階の分類に基づく予測のために設計されている。
深層階層型変分オートコーダ(VAE)と拡散確率的手法を組み合わせてセック2seqの株価予測を行う。
本モデルでは, 予測精度と分散性の観点から, 最先端の解よりも優れていることを示す。
論文 参考訳(メタデータ) (2023-08-18T16:21:15Z) - Estimating risks of option books using neural-SDE market models [6.319314191226118]
我々は、仲裁自由なニューラル-SDE市場モデルを用いて、単一基盤上の複数のヨーロッパオプションのジョイントダイナミクスの現実的なシナリオを生成する。
提案モデルでは,オプションポートフォリオのバリュー・アット・リスク(VaR)を評価する上で,計算効率が高く,精度も高く,カバー性能も向上し,従来のフィルタによるシミュレーション手法よりもプロサイクル性も低いことを示す。
論文 参考訳(メタデータ) (2022-02-15T02:39:42Z) - Data-driven Hedging of Stock Index Options via Deep Learning [6.952039070065292]
我々は、オプションデータから直接S&P500インデックスオプションのヘッジ比を学習するために、ディープラーニングモデルを開発する。
特徴の異なる組み合わせを比較し、成熟までの時間を持つフィードフォワードニューラルネットワークモデル、Black-Scholes deltaおよび感情変数が、アウトオブサンプルテストにおいて最善であることを示す。
論文 参考訳(メタデータ) (2021-11-05T12:53:47Z) - Stock Price Prediction Under Anomalous Circumstances [81.37657557441649]
本稿では,異常な状況下での株価の変動パターンを捉えることを目的とする。
ARIMAとLSTMのモデルは、シングルストックレベル、業界レベル、一般市場レベルでトレーニングします。
2016年から2020年にかけての100社の株価に基づいて、平均予測精度は98%に達した。
論文 参考訳(メタデータ) (2021-09-14T18:50:38Z) - Discriminating modelling approaches for Point in Time Economic Scenario
Generation [5.733401663293044]
時間経済シナリオ生成におけるポイントの概念(PiT ESG)を紹介する。
PiT ESGは、長期にわたる歴史的データのみを調整した従来のESGよりも、突然の経済変化に対する迅速かつ柔軟な反応を提供するべきである。
我々は,非パラメトリックフィルタ履歴シミュレーション,GARCHモデルと関節推定(パラメトリック),制限ボルツマンマシン,条件付き変分オートエンコーダ(ジェネレータネットワーク)を比較し,PiT ESGとして適合性を検討した。
論文 参考訳(メタデータ) (2021-08-19T17:36:53Z) - Low-Rank Temporal Attention-Augmented Bilinear Network for financial
time-series forecasting [93.73198973454944]
ディープラーニングモデルは、金融時系列データの予測問題など、さまざまな領域から来る多くの問題において、大幅なパフォーマンス改善をもたらしている。
近年,制限順序書の時系列予測の効率的かつ高性能なモデルとして,時間的注意強化バイリニアネットワークが提案されている。
本稿では,モデルの低ランクテンソル近似を提案し,トレーニング可能なパラメータの数をさらに削減し,その速度を向上する。
論文 参考訳(メタデータ) (2021-07-05T10:15:23Z) - Deep Stochastic Volatility Model [3.3970049571884204]
本論文では, 深部潜在変数モデルの枠組みに基づく深部ボラティリティモデル(DSVM)を提案する。
フレキシブルなディープラーニングモデルを使用して、過去のリターンに対する将来のボラティリティの依存性を自動的に検出する。
実データ分析では、DSVMはいくつかの一般的な代替ボラティリティモデルよりも優れています。
論文 参考訳(メタデータ) (2021-02-25T03:25:33Z) - Robust pricing and hedging via neural SDEs [0.0]
我々は,ニューラルSDEの効率的な利用に必要な新しいアルゴリズムを開発し,分析する。
我々は、関連する市場データを取り入れつつ、デリバティブの価格とそれに対応するヘッジ戦略の堅牢な境界を見出した。
ニューラルSDEはリスクニュートラルと現実世界の両方で一貫したキャリブレーションを可能にする。
論文 参考訳(メタデータ) (2020-07-08T14:33:17Z) - Deep Stock Predictions [58.720142291102135]
本稿では,Long Short Term Memory (LSTM) ニューラルネットワークを用いてポートフォリオ最適化を行うトレーディング戦略の設計について考察する。
次に、LSTMのトレーニングに使用する損失関数をカスタマイズし、利益を上げる。
カスタマイズされた損失関数を持つLSTMモデルは、ARIMAのような回帰ベースライン上でのトレーニングボットの性能を向上させる。
論文 参考訳(メタデータ) (2020-06-08T23:37:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。