論文の概要: Federated Learning in Satellite Constellations
- arxiv url: http://arxiv.org/abs/2206.00307v3
- Date: Thu, 4 May 2023 13:50:59 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-05 19:47:17.973102
- Title: Federated Learning in Satellite Constellations
- Title(参考訳): 衛星コンステレーションにおけるフェデレーション学習
- Authors: Bho Matthiesen, Nasrin Razmi, Israel Leyva-Mayorga, Armin Dekorsy,
Petar Popovski
- Abstract要約: フェデレートラーニング(FL)は、最近、限定的で断続的な接続を持つシステムのための分散機械学習パラダイムとして登場した。
本稿では,衛星コンステレーションがFLにもたらす新たなコンテキストについて述べる。
- 参考スコア(独自算出の注目度): 38.58782102290874
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated learning (FL) has recently emerged as a distributed machine
learning paradigm for systems with limited and intermittent connectivity. This
paper presents the new context brought to FL by satellite constellations, where
the connectivity patterns are significantly different from the ones observed in
conventional terrestrial FL. The focus is on large constellations in low Earth
orbit (LEO), where each satellites participates in a data-driven FL task using
a locally stored dataset. This scenario is motivated by the trend towards mega
constellations of interconnected small satellites in LEO and the integration of
artificial intelligence in satellites. We propose a classification of satellite
FL based on the communication capabilities of the satellites, the constellation
design, and the location of the parameter server. A comprehensive overview of
the current state-of-the-art in this field is provided and the unique
challenges and opportunities of satellite FL are discussed. Finally, we outline
several open research directions for FL in satellite constellations and present
some future perspectives on this topic.
- Abstract(参考訳): フェデレートラーニング(FL)は、最近、限定的で断続的な接続を持つシステムのための分散機械学習パラダイムとして登場した。
本稿では,衛星コンステレーションがFLにもたらす新たなコンテキストについて述べる。
焦点は低軌道(leo)の大きな星座であり、各衛星はローカルに格納されたデータセットを使用してデータ駆動のflタスクに参加する。
このシナリオは、LEO内の相互接続された小さな衛星の巨大星座への傾向と、衛星への人工知能の統合によるものである。
本稿では,衛星の通信能力,コンステレーション設計,パラメータサーバの位置に基づく衛星flの分類を提案する。
本分野における最先端技術の概要を概観し,サテライトflのユニークな課題と機会について考察した。
最後に、衛星コンステレーションにおけるFL研究の方向性について概説し、今後の展望を述べる。
関連論文リスト
- Space for Improvement: Navigating the Design Space for Federated Learning in Satellite Constellations [0.8437187555622164]
衛星コンステレーションの設計とハードウェア対応テストプラットフォームであるFLySTacKを用いて,既存のFLアルゴリズムの空間化手法を開発した。
我々はAutoFLSatを紹介した。これは空間に対する一般化された階層的な自律的FLアルゴリズムであり、主要な代替手段よりも12.5%から37.5%のモデルトレーニング時間を短縮する。
論文 参考訳(メタデータ) (2024-10-31T23:49:36Z) - Heterogeneity: An Open Challenge for Federated On-board Machine Learning [2.519319150166215]
本稿では,フェデレーテッド・ラーニングにおけるクロスプロデューサ・ユース・ケースの文脈における課題の体系的レビューを行う。
このようなアプリケーションは、そのようなシステムの異質性から主に生じるフェデレートラーニングパラダイムに、さらなる課題を提示します。
論文 参考訳(メタデータ) (2024-08-13T13:56:17Z) - Satellite Federated Edge Learning: Architecture Design and Convergence Analysis [47.057886812985984]
本稿では,FEDMEGAという新しいFEELアルゴリズムを提案する。
軌道内モデルアグリゲーションのための衛星間リンク(ISL)を統合することにより、提案アルゴリズムは低データレートと断続的なGSLの使用を著しく削減する。
提案手法は,環全リデューサに基づく軌道内アグリゲーション機構と,グローバルモデルアグリゲーションのためのネットワークフローベースのトランスミッションスキームを組み合わせたものである。
論文 参考訳(メタデータ) (2024-04-02T11:59:58Z) - FedSN: A Federated Learning Framework over Heterogeneous LEO Satellite Networks [18.213174641216884]
多数の低軌道軌道(LEO)衛星が打ち上げられ、SpaceXなどの商業企業によって宇宙に投入された。
LEO衛星が搭載するマルチモーダルセンサにより、通信だけでなく、空間変調認識やリモートセンシング画像分類など、さまざまな機械学習アプリケーションにも機能する。
本稿では,これらの課題に対処するための一般FLフレームワークとしてFedSNを提案し,LEO衛星上でのデータ多様性について検討する。
論文 参考訳(メタデータ) (2023-11-02T14:47:06Z) - Optimizing Federated Learning in LEO Satellite Constellations via
Intra-Plane Model Propagation and Sink Satellite Scheduling [3.096615629099617]
衛星エッジコンピューティング(SEC)は、各衛星がMLモデルをオンボードで訓練し、モデルのみを地上局にアップロードすることを可能にする。
本稿では、既存のFLベースのソリューションの制限(緩やかな収束)を克服する新しいFLフレームワークであるFedLEOを提案する。
以上の結果から,FedLEO は FL の収束を著しく促進するが,実際にモデル精度を大幅に向上させる。
論文 参考訳(メタデータ) (2023-02-27T00:32:01Z) - A CubeSat platform for space based quantum key distribution [62.997667081978825]
我々は3UキューブサットであるSpooQy-1のフォローアップミッションについて報告し、軌道上で偏光に絡み合った光子の発生を実証した。
ミッションの次のイテレーションでは、偏光に絡み合った光子対のコンパクトなソースに基づいて、衛星と地上の量子鍵の分布を示す。
我々は,現在シンガポールで建設中の光地上局の設計について,量子信号を受信するための設計を簡潔に述べる。
論文 参考訳(メタデータ) (2022-04-23T06:28:43Z) - FedSpace: An Efficient Federated Learning Framework at Satellites and
Ground Stations [10.250105527148731]
低軌道(LEO)衛星の大規模な展開は、大量の地球画像やセンサーデータを収集する。
ダウンリンク帯域の制限、疎結合性、画像解像度の正規化制約のため、高解像度画像をダウンロードし、これらの機械学習モデルを地上で訓練することは不可能であることが多い。
本稿では,地上局と衛星が収集した画像を衛星上で共有することなく,グローバルMLモデルを協調訓練するフェデレートラーニング(FL)を提案する。
論文 参考訳(メタデータ) (2022-02-02T20:09:27Z) - Learning Emergent Random Access Protocol for LEO Satellite Networks [51.575090080749554]
創発的ランダムアクセスチャネルプロトコル(eRACH)と呼ばれるLEO SATネットワークのための新しい許可なしランダムアクセスソリューションを提案する。
eRACHは、非定常ネットワーク環境との相互作用によって生じるモデルフリーなアプローチである。
RACHと比較して,提案するeRACHは平均ネットワークスループットが54.6%向上することを示す。
論文 参考訳(メタデータ) (2021-12-03T07:44:45Z) - Deep Learning Aided Routing for Space-Air-Ground Integrated Networks
Relying on Real Satellite, Flight, and Shipping Data [79.96177511319713]
現在の海上通信は主に単なる送信資源を持つ衛星に依存しており、現代の地上無線ネットワークよりも性能が劣っている。
大陸横断航空輸送の増加に伴い、商業旅客機に依存した航空アドホックネットワークという有望な概念は、空対地およびマルチホップ空対空リンクを介して衛星ベースの海上通信を強化する可能性がある。
低軌道衛星コンステレーション、旅客機、地上基地局、船舶がそれぞれ宇宙、航空、船舶として機能する、ユビキタスな海上通信を支援するための宇宙地上統合ネットワーク(SAGIN)を提案する。
論文 参考訳(メタデータ) (2021-10-28T14:12:10Z) - Integrating LEO Satellite and UAV Relaying via Reinforcement Learning
for Non-Terrestrial Networks [51.05735925326235]
低軌道軌道(LEO)衛星のメガコンステレーションは、低レイテンシで長距離通信を可能にする可能性がある。
軌道上の星座から選択されたLEO衛星を用いて、2つの遠距離地上端末間でパケットを転送する問題について検討する。
エンドツーエンドのデータレートを最大化するためには、衛星アソシエーションとHAPロケーションを最適化する必要がある。
本稿では, 深部強化学習(DRL)と新しい動作次元低減技術を用いてこの問題に対処する。
論文 参考訳(メタデータ) (2020-05-26T05:39:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。