論文の概要: Space for Improvement: Navigating the Design Space for Federated Learning in Satellite Constellations
- arxiv url: http://arxiv.org/abs/2411.00263v1
- Date: Thu, 31 Oct 2024 23:49:36 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-05 14:47:31.893417
- Title: Space for Improvement: Navigating the Design Space for Federated Learning in Satellite Constellations
- Title(参考訳): 改良のためのスペース:衛星コンステレーションにおけるフェデレーション学習のためのデザインスペースのナビゲーション
- Authors: Grace Kim, Luca Powell, Filip Svoboda, Nicholas Lane,
- Abstract要約: 衛星コンステレーションの設計とハードウェア対応テストプラットフォームであるFLySTacKを用いて,既存のFLアルゴリズムの空間化手法を開発した。
我々はAutoFLSatを紹介した。これは空間に対する一般化された階層的な自律的FLアルゴリズムであり、主要な代替手段よりも12.5%から37.5%のモデルトレーニング時間を短縮する。
- 参考スコア(独自算出の注目度): 0.8437187555622164
- License:
- Abstract: Space has emerged as an exciting new application area for machine learning, with several missions equipping deep learning capabilities on-board spacecraft. Pre-processing satellite data through on-board training is necessary to address the satellite downlink deficit, as not enough transmission opportunities are available to match the high rates of data generation. To scale this effort across entire constellations, collaborated training in orbit has been enabled through federated learning (FL). While current explorations of FL in this context have successfully adapted FL algorithms for scenario-specific constraints, these theoretical FL implementations face several limitations that prevent progress towards real-world deployment. To address this gap, we provide a holistic exploration of the FL in space domain on several fronts. 1) We develop a method for space-ification of existing FL algorithms, evaluated on 2) FLySTacK, our novel satellite constellation design and hardware aware testing platform where we perform rigorous algorithm evaluations. Finally we introduce 3) AutoFLSat, a generalized, hierarchical, autonomous FL algorithm for space that provides a 12.5% to 37.5% reduction in model training time than leading alternatives.
- Abstract(参考訳): 宇宙は機械学習のエキサイティングな新しい応用分野として現れており、いくつかのミッションでは宇宙船にディープラーニング機能が搭載されている。
衛星のダウンリンク障害に対処するためには、衛星データの事前処理が必要である。
この努力を星座全体にわたって拡大するために、軌道上での共同訓練が連邦学習(FL)によって可能になった。
この状況下でのFLの現在の探索はシナリオ固有の制約に対してFLアルゴリズムを適応させることに成功しているが、これらの理論的なFL実装は現実の展開に向けた進歩を妨げるいくつかの制限に直面している。
このギャップに対処するため、いくつかの面における空間領域におけるFLの総合的な探索を提供する。
1)既存のFLアルゴリズムの空間化手法を開発し,評価する。
2) FLySTacK, 衛星コンステレーション設計およびハードウェア対応テストプラットフォームを用いて, 厳密なアルゴリズム評価を行った。
最後に紹介する
3) AutoFLSatは、一般的な階層的かつ自律的な宇宙用FLアルゴリズムであり、主要な代替手段よりも12.5%から37.5%のモデルトレーニング時間を短縮する。
関連論文リスト
- OPUS: Occupancy Prediction Using a Sparse Set [64.60854562502523]
学習可能なクエリの集合を用いて、占有された場所とクラスを同時に予測するフレームワークを提案する。
OPUSには、モデルパフォーマンスを高めるための非自明な戦略が組み込まれている。
最も軽量なモデルではOcc3D-nuScenesデータセットの2倍 FPS に優れたRayIoUが得られる一方、最も重いモデルは6.1 RayIoUを上回ります。
論文 参考訳(メタデータ) (2024-09-14T07:44:22Z) - Stitching Satellites to the Edge: Pervasive and Efficient Federated LEO Satellite Learning [1.3121410433987561]
本稿では,衛星が大規模機械学習(ML)タスクを効率的に実行できるようにする新しいFL-SECフレームワークを提案する。
主な構成要素は、余分な衛星画像を特定して排除するディビジョン・アンド・コンカーによるパーソナライズドラーニングと、軌道毎に集約された「軌道モデル」を生成し、地上局に送る前に再訓練する軌道モデル再訓練である。
我々のアプローチではFL収束時間が30倍近く減少し、衛星のエネルギー消費は1.38ワットまで減少し、例外的な精度は96%まで維持される。
論文 参考訳(メタデータ) (2024-01-28T02:01:26Z) - Characterizing Satellite Geometry via Accelerated 3D Gaussian Splatting [0.0]
本稿では,3次元ガウス散乱に基づく軌道上の衛星のマッピング手法を提案する。
ループ型衛星モックアップにおけるモデルトレーニングと3次元レンダリング性能を実演する。
我々のモデルでは、未知の衛星の高品質な新しいビューを、従来のNeRFベースのアルゴリズムよりも2桁近く高速にトレーニングし、レンダリングすることが可能であることが示されている。
論文 参考訳(メタデータ) (2024-01-05T00:49:56Z) - Communication-Efficient Federated Learning for LEO Satellite Networks
Integrated with HAPs Using Hybrid NOMA-OFDM [1.3121410433987561]
本稿では,LEO衛星に適した新しいFL-SatComアプローチであるNomaFedHAPを提案する。
NomaFedHAPは高高度プラットフォーム(HAP)を分散パラメータサーバ(PS)として利用し、衛星の可視性を高める。
近距離シェルにおける衛星の停止確率とシステム全体の停止確率のクローズドな表現を導出する。
論文 参考訳(メタデータ) (2024-01-01T07:07:27Z) - FedSN: A Federated Learning Framework over Heterogeneous LEO Satellite Networks [18.213174641216884]
多数の低軌道軌道(LEO)衛星が打ち上げられ、SpaceXなどの商業企業によって宇宙に投入された。
LEO衛星が搭載するマルチモーダルセンサにより、通信だけでなく、空間変調認識やリモートセンシング画像分類など、さまざまな機械学習アプリケーションにも機能する。
本稿では,これらの課題に対処するための一般FLフレームワークとしてFedSNを提案し,LEO衛星上でのデータ多様性について検討する。
論文 参考訳(メタデータ) (2023-11-02T14:47:06Z) - Semi-Federated Learning: Convergence Analysis and Optimization of A
Hybrid Learning Framework [70.83511997272457]
本稿では,ベースステーション(BS)とデバイスの両方を活用するセミフェデレーション学習(SemiFL)パラダイムを提案し,中央集権学習(CL)とFLのハイブリッド実装を提案する。
我々はこの難解な問題を解くための2段階のアルゴリズムを提案し、ビームフォーマに閉形式解を提供する。
論文 参考訳(メタデータ) (2023-10-04T03:32:39Z) - Vertical Federated Learning over Cloud-RAN: Convergence Analysis and
System Optimization [82.12796238714589]
高速かつ正確なモデルアグリゲーションを実現するために,クラウド無線アクセスネットワーク(Cloud-RAN)ベースの垂直FLシステムを提案する。
アップリンクとダウンリンクの両方の伝送を考慮した垂直FLアルゴリズムの収束挙動を特徴付ける。
我々は,連続凸近似と代替凸探索に基づくシステム最適化アルゴリズムを開発した,連系トランシーバとフロントホール量子化設計によるシステム最適化フレームワークを構築した。
論文 参考訳(メタデータ) (2023-05-04T09:26:03Z) - FS-Real: Towards Real-World Cross-Device Federated Learning [60.91678132132229]
Federated Learning (FL)は、ローカルデータをアップロードすることなく、分散クライアントと協調して高品質なモデルをトレーニングすることを目的としている。
FL研究と実世界のシナリオの間には依然としてかなりのギャップがあり、主に異種デバイスの特徴とそのスケールによって引き起こされている。
本稿では,実世界横断デバイスFL,FS-Realのための効率的でスケーラブルなプロトタイピングシステムを提案する。
論文 参考訳(メタデータ) (2023-03-23T15:37:17Z) - Federated Learning in Satellite Constellations [38.58782102290874]
フェデレートラーニング(FL)は、最近、限定的で断続的な接続を持つシステムのための分散機械学習パラダイムとして登場した。
本稿では,衛星コンステレーションがFLにもたらす新たなコンテキストについて述べる。
論文 参考訳(メタデータ) (2022-06-01T08:17:25Z) - Trajectory Design for UAV-Based Internet-of-Things Data Collection: A
Deep Reinforcement Learning Approach [93.67588414950656]
本稿では,無人航空機(UAV)による3D環境におけるIoT(Internet-of-Things)システムについて検討する。
本稿では,TD3-TDCTMアルゴリズムの完成時間最小化のためのトラジェクトリ設計を提案する。
シミュレーションの結果,従来の3つの非学習ベースライン法よりもTD3-TDCTMアルゴリズムの方が優れていることが示された。
論文 参考訳(メタデータ) (2021-07-23T03:33:29Z) - Integrating LEO Satellite and UAV Relaying via Reinforcement Learning
for Non-Terrestrial Networks [51.05735925326235]
低軌道軌道(LEO)衛星のメガコンステレーションは、低レイテンシで長距離通信を可能にする可能性がある。
軌道上の星座から選択されたLEO衛星を用いて、2つの遠距離地上端末間でパケットを転送する問題について検討する。
エンドツーエンドのデータレートを最大化するためには、衛星アソシエーションとHAPロケーションを最適化する必要がある。
本稿では, 深部強化学習(DRL)と新しい動作次元低減技術を用いてこの問題に対処する。
論文 参考訳(メタデータ) (2020-05-26T05:39:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。