論文の概要: Neural Conditional Probability for Inference
- arxiv url: http://arxiv.org/abs/2407.01171v1
- Date: Mon, 1 Jul 2024 10:44:29 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-03 21:59:43.045739
- Title: Neural Conditional Probability for Inference
- Title(参考訳): 推論のためのニューラル条件確率
- Authors: Vladimir R. Kostic, Karim Lounici, Gregoire Pacreau, Pietro Novelli, Giacomo Turri, Massimiliano Pontil,
- Abstract要約: NCP(Neural Conditional Probability)は,条件分布を学習するための演算子理論的手法である。
ニューラルネットワークの強力な近似能力を活用することで、我々は様々な複雑な確率分布を効率的に扱うことができる。
実験の結果,本手法は単純なマルチ層パーセプトロン(MLP)と2つの隠蔽層とGELUアクティベーションを用いて,先行する手法と一致または一致していることがわかった。
- 参考スコア(独自算出の注目度): 22.951644463554352
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce NCP (Neural Conditional Probability), a novel operator-theoretic approach for learning conditional distributions with a particular focus on inference tasks. NCP can be used to build conditional confidence regions and extract important statistics like conditional quantiles, mean, and covariance. It offers streamlined learning through a single unconditional training phase, facilitating efficient inference without the need for retraining even when conditioning changes. By tapping into the powerful approximation capabilities of neural networks, our method efficiently handles a wide variety of complex probability distributions, effectively dealing with nonlinear relationships between input and output variables. Theoretical guarantees ensure both optimization consistency and statistical accuracy of the NCP method. Our experiments show that our approach matches or beats leading methods using a simple Multi-Layer Perceptron (MLP) with two hidden layers and GELU activations. This demonstrates that a minimalistic architecture with a theoretically grounded loss function can achieve competitive results without sacrificing performance, even in the face of more complex architectures.
- Abstract(参考訳): NCP(Neural Conditional Probability)は,特に推論タスクに着目した条件分布学習のための演算子理論的手法である。
NCPは条件付き信頼領域を構築し、条件付き量子化、平均、共分散のような重要な統計を抽出するのに使うことができる。
単一の無条件のトレーニングフェーズを通じて、合理化された学習を提供し、条件が変更されても、再トレーニングを必要とせずに、効率的な推論を容易にする。
ニューラルネットワークの強力な近似能力を活用することで,入力変数と出力変数の非線形関係を効果的に処理し,多種多様な確率分布を効率的に処理する。
理論的保証は、NPP法の最適化一貫性と統計的精度の両方を保証する。
実験の結果,本手法は単純なマルチ層パーセプトロン(MLP)と2つの隠蔽層とGELUアクティベーションを用いて,先行する手法と一致または一致していることがわかった。
このことは、より複雑なアーキテクチャに直面してもパフォーマンスを犠牲にすることなく、理論的に基底を持つ損失関数を持つ最小限のアーキテクチャが競合する結果を達成できることを証明している。
関連論文リスト
- Uncertainty Quantification with the Empirical Neural Tangent Kernel [12.388707890314539]
トレーニング終了時のオーバーパラメータ化ネットワークに対するポストホックサンプリングに基づくUQ手法を提案する。
実験的なニューラルタンジェントカーネルを用いて,ガウス過程の後部を効果的に近似することを示した。
提案手法は, 計算効率の競合するアプローチ(多くの場合, 複数の要因によるコスト削減)に勝るだけでなく, 回帰処理と分類処理の両方において, 様々なUQ指標の最先端性能も維持できることを示す。
論文 参考訳(メタデータ) (2025-02-05T04:01:34Z) - Conformal Risk Minimization with Variance Reduction [37.74931189657469]
コンフォーマル予測(CP)は、ブラックボックスモデルにおける確率的保証を達成するための分布自由フレームワークである。
最近の研究は、トレーニング中のCP効率の最適化に重点を置いている。
我々は、この概念を共形リスク最小化の問題として定式化する。
論文 参考訳(メタデータ) (2024-11-03T21:48:15Z) - Statistical Inference for Temporal Difference Learning with Linear Function Approximation [62.69448336714418]
The consistency properties of TD learning with Polyak-Ruppert averaging and linear function approximation。
まず、分散に明示的に依存し、弱い条件下で保持する新しい高次元確率収束保証を導出する。
さらに、文献よりも高速な速度を保証する凸集合のクラスに対して、洗練された高次元ベリー-エッセイン境界を確立する。
論文 参考訳(メタデータ) (2024-10-21T15:34:44Z) - Generative Conditional Distributions by Neural (Entropic) Optimal Transport [12.152228552335798]
本稿では,条件分布の生成モデル学習を目的とした,ニューラルエントロピー最適輸送手法を提案する。
提案手法は,2つのニューラルネットワークのミニマックストレーニングに依存する。
実世界のデータセットを用いた実験では,現状条件分布学習法と比較して,アルゴリズムの有効性が示された。
論文 参考訳(メタデータ) (2024-06-04T13:45:35Z) - High Confidence Level Inference is Almost Free using Parallel Stochastic
Optimization [16.38026811561888]
本稿では,高効率計算と高速収束による信頼区間構築に焦点をあてた新しい推論手法を提案する。
提案手法は,推定値の標準的な更新を超える最小限の計算量とメモリを必要とするため,推論処理はほとんどコストがかからない。
論文 参考訳(メタデータ) (2024-01-17T17:11:45Z) - Efficient and Flexible Neural Network Training through Layer-wise Feedback Propagation [49.44309457870649]
ニューラルネットワークのような予測器のための新しいトレーニング原理であるLFP(Layer-wise Feedback Propagation)を提案する。
LFPは、与えられたタスクの解決へのそれぞれの貢献に基づいて、個々のニューロンに報酬を分解する。
提案手法は,ネットワークの有用な部分を補強し,有害な部分を弱めるという欲求的アプローチを実現する。
論文 参考訳(メタデータ) (2023-08-23T10:48:28Z) - Stabilizing Q-learning with Linear Architectures for Provably Efficient
Learning [53.17258888552998]
本研究では,線形関数近似を用いた基本的な$Q$-learningプロトコルの探索変種を提案する。
このアルゴリズムの性能は,新しい近似誤差というより寛容な概念の下で,非常に優雅に低下することを示す。
論文 参考訳(メタデータ) (2022-06-01T23:26:51Z) - Semantic Probabilistic Layers for Neuro-Symbolic Learning [83.25785999205932]
我々は構造化出力予測(SOP)のための予測層を設計する。
予測が事前に定義されたシンボリック制約のセットと一致していることを保証するため、任意のニューラルネットワークにプラグインすることができる。
我々のセマンティック確率層(SPL)は、構造化された出力空間上で複雑な相関や制約をモデル化することができる。
論文 参考訳(メタデータ) (2022-06-01T12:02:38Z) - Comparative Analysis of Interval Reachability for Robust Implicit and
Feedforward Neural Networks [64.23331120621118]
我々は、暗黙的ニューラルネットワーク(INN)の堅牢性を保証するために、区間到達可能性分析を用いる。
INNは暗黙の方程式をレイヤとして使用する暗黙の学習モデルのクラスである。
提案手法は, INNに最先端の区間境界伝搬法を適用するよりも, 少なくとも, 一般的には, 有効であることを示す。
論文 参考訳(メタデータ) (2022-04-01T03:31:27Z) - Learning Likelihoods with Conditional Normalizing Flows [54.60456010771409]
条件正規化フロー(CNF)はサンプリングと推論において効率的である。
出力空間写像に対する基底密度が入力 x 上で条件づけられた CNF について、条件密度 p(y|x) をモデル化する。
論文 参考訳(メタデータ) (2019-11-29T19:17:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。