論文の概要: Topological Deep Learning: Going Beyond Graph Data
- arxiv url: http://arxiv.org/abs/2206.00606v3
- Date: Fri, 19 May 2023 22:13:16 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-24 06:15:34.957771
- Title: Topological Deep Learning: Going Beyond Graph Data
- Title(参考訳): トポロジカルディープラーニング: グラフデータを超えて
- Authors: Mustafa Hajij, Ghada Zamzmi, Theodore Papamarkou, Nina Miolane, Aldo
Guzm\'an-S\'aenz, Karthikeyan Natesan Ramamurthy, Tolga Birdal, Tamal K. Dey,
Soham Mukherjee, Shreyas N. Samaga, Neal Livesay, Robin Walters, Paul Rosen,
Michael T. Schaub
- Abstract要約: 我々は、広く採用されている位相領域を含むよりリッチなデータ構造の上に構築された統一的な深層学習フレームワークを提案する。
具体的には、新しいタイプのトポロジカルドメインであるコンプレックスを導入する。
我々は、主に注意に基づくCCNNに焦点を当てた、メッセージパッシング複合ニューラルネットワーク(CCNN)のクラスを開発する。
- 参考スコア(独自算出の注目度): 26.325857542512047
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Topological deep learning is a rapidly growing field that pertains to the
development of deep learning models for data supported on topological domains
such as simplicial complexes, cell complexes, and hypergraphs, which generalize
many domains encountered in scientific computations. In this paper, we present
a unifying deep learning framework built upon a richer data structure that
includes widely adopted topological domains.
Specifically, we first introduce combinatorial complexes, a novel type of
topological domain. Combinatorial complexes can be seen as generalizations of
graphs that maintain certain desirable properties. Similar to hypergraphs,
combinatorial complexes impose no constraints on the set of relations. In
addition, combinatorial complexes permit the construction of hierarchical
higher-order relations, analogous to those found in simplicial and cell
complexes. Thus, combinatorial complexes generalize and combine useful traits
of both hypergraphs and cell complexes, which have emerged as two promising
abstractions that facilitate the generalization of graph neural networks to
topological spaces.
Second, building upon combinatorial complexes and their rich combinatorial
and algebraic structure, we develop a general class of message-passing
combinatorial complex neural networks (CCNNs), focusing primarily on
attention-based CCNNs. We characterize permutation and orientation
equivariances of CCNNs, and discuss pooling and unpooling operations within
CCNNs in detail.
Third, we evaluate the performance of CCNNs on tasks related to mesh shape
analysis and graph learning. Our experiments demonstrate that CCNNs have
competitive performance as compared to state-of-the-art deep learning models
specifically tailored to the same tasks. Our findings demonstrate the
advantages of incorporating higher-order relations into deep learning models in
different applications.
- Abstract(参考訳): トポロジカルディープラーニング(英: topological deep learning)は、単純複体、細胞複合体、ハイパーグラフなどのトポロジカルドメインでサポートされているデータのためのディープラーニングモデルの開発に関連する、急速に成長している分野である。
本稿では,広く採用されているトポロジ領域を含むよりリッチなデータ構造上に構築された,統一的な深層学習フレームワークを提案する。
具体的には,新しいタイプのトポロジカルドメインであるコンビナトリコンプレックスを導入する。
組合せ錯体は、特定の望ましい性質を維持するグラフの一般化と見なすことができる。
ハイパーグラフと同様に、組合せ錯体は関係の集合に制約を課さない。
さらに、コンビナート錯体は、単純および細胞複合体で見られるような階層的な高次関係の構築を可能にする。
したがって、組合せ錯体は、グラフニューラルネットワークの位相空間への一般化を促進する2つの有望な抽象化として出現したハイパーグラフとセル複合体の両方の有用な特性を一般化し結合する。
次に、組合せ錯体とそのリッチな組合せ構造と代数構造に基づいて、注意に基づくccnnを中心に、メッセージパッシング組合せ複合ニューラルネットワーク(ccnns)の一般クラスを構築した。
我々は、CCNNの置換と配向の等式を特徴付け、CCNN内のプーリングとアンプール操作を詳細に論じる。
第3に,メッシュ形状解析とグラフ学習に関わるタスクにおけるCCNNの性能を評価する。
我々の実験では、CCNNは最先端のディープラーニングモデルと比較すると、同じタスクに特化している。
本研究は,高次関係を異なるアプリケーションでディープラーニングモデルに組み込むことの利点を実証する。
関連論文リスト
- Defining Neural Network Architecture through Polytope Structures of Dataset [53.512432492636236]
本稿では, ニューラルネットワーク幅の上下境界を定義し, 問題となるデータセットのポリトープ構造から情報を得る。
本研究では,データセットのポリトープ構造を学習したニューラルネットワークから推定できる逆条件を探索するアルゴリズムを開発した。
MNIST、Fashion-MNIST、CIFAR10といった一般的なデータセットは、顔の少ない2つ以上のポリトップを用いて効率的にカプセル化できることが確立されている。
論文 参考訳(メタデータ) (2024-02-04T08:57:42Z) - DGNN: Decoupled Graph Neural Networks with Structural Consistency
between Attribute and Graph Embedding Representations [62.04558318166396]
グラフニューラルネットワーク(GNN)は、複雑な構造を持つグラフ上での表現学習の堅牢性を示す。
ノードのより包括的な埋め込み表現を得るために、Decoupled Graph Neural Networks (DGNN)と呼ばれる新しいGNNフレームワークが導入された。
複数のグラフベンチマークデータセットを用いて、ノード分類タスクにおけるDGNNの優位性を検証した。
論文 参考訳(メタデータ) (2024-01-28T06:43:13Z) - Inferring community structure in attributed hypergraphs using stochastic
block models [3.335932527835653]
本研究では,ノード属性データをハイパーグラフのコミュニティ構造学習に組み込む統計フレームワークを開発した。
我々は,HyperNEOと呼ぶモデルにより,人工・経験的ハイパーグラフにおけるコミュニティ構造の学習が促進されることを実証した。
我々は,現実世界の複合システムにおける高次コミュニティ構造の調査と理解の拡大を期待する。
論文 参考訳(メタデータ) (2024-01-01T07:31:32Z) - Learning Hierarchical Relational Representations through Relational Convolutions [2.5322020135765464]
本稿では、より複雑な関係性の特徴を捉える計算機構を備えたニューラルネットワークである「リレーショナル畳み込みネットワーク」を紹介する。
このフレームワークの重要なコンポーネントは、グラフレットフィルタを畳み込み、オブジェクトのグループ内の関係パターンをキャプチャする新しい操作である。
アーキテクチャのモチベーションと詳細、およびリレーショナル畳み込みネットワークが階層構造を持つリレーショナルタスクをモデル化するための効果的なフレームワークを提供するための一連の実験を示す。
論文 参考訳(メタデータ) (2023-10-05T01:22:50Z) - Data Topology-Dependent Upper Bounds of Neural Network Widths [52.58441144171022]
まず、3層ニューラルネットワークがコンパクトな集合上のインジケータ関数を近似するように設計可能であることを示す。
その後、これは単純複体へと拡張され、その位相構造に基づいて幅の上界が導かれる。
トポロジカルアプローチを用いて3層ReLUネットワークの普遍近似特性を証明した。
論文 参考訳(メタデータ) (2023-05-25T14:17:15Z) - Topological Learning in Multi-Class Data Sets [0.3050152425444477]
フィードフォワードディープニューラルネットワーク(DNN)の学習におけるトポロジカル複雑度の影響について検討する。
我々は,複数の構築およびオープンソースデータセットに対するトポロジ的分類アルゴリズムの評価を行った。
論文 参考訳(メタデータ) (2023-01-23T21:54:25Z) - Deep Architecture Connectivity Matters for Its Convergence: A
Fine-Grained Analysis [94.64007376939735]
我々は、勾配降下訓練におけるディープニューラルネットワーク(DNN)の収束に対する接続パターンの影響を理論的に特徴づける。
接続パターンの単純なフィルタリングによって、評価対象のモデルの数を削減できることが示される。
論文 参考訳(メタデータ) (2022-05-11T17:43:54Z) - Universal approximation property of invertible neural networks [76.95927093274392]
Invertible Neural Network (INN) は、設計によって可逆性を持つニューラルネットワークアーキテクチャである。
その可逆性とヤコビアンのトラクタビリティのおかげで、IGNは確率的モデリング、生成的モデリング、表現的学習など、さまざまな機械学習応用がある。
論文 参考訳(メタデータ) (2022-04-15T10:45:26Z) - Dist2Cycle: A Simplicial Neural Network for Homology Localization [66.15805004725809]
単純複体は多方向順序関係を明示的にエンコードするグラフの高次元一般化と見なすことができる。
単体錯体の$k$-homological特徴によってパラメータ化された関数のグラフ畳み込みモデルを提案する。
論文 参考訳(メタデータ) (2021-10-28T14:59:41Z) - Simplicial Neural Networks [0.0]
SNN(Simplicial Neural Network)を提案する。
SNNは、Simplicial Complexと呼ばれる位相空間のクラスに存在するデータへのグラフニューラルネットワークの一般化である。
我々は,コオーサシップコンプレックスの欠落したデータを出力する作業において,SNNを試験する。
論文 参考訳(メタデータ) (2020-10-07T20:15:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。