論文の概要: Accelerating hydrodynamic simulations of urban drainage systems with
physics-guided machine learning
- arxiv url: http://arxiv.org/abs/2206.01538v1
- Date: Tue, 24 May 2022 19:44:46 GMT
- ステータス: 処理完了
- システム内更新日: 2022-06-12 09:32:19.713325
- Title: Accelerating hydrodynamic simulations of urban drainage systems with
physics-guided machine learning
- Title(参考訳): 物理誘導機械学習による都市排水系の流体力学シミュレーション
- Authors: Rocco Palmitessa, Morten Grum, Allan Peter Engsig-Karup, Roland L\"owe
- Abstract要約: 本研究では,物理誘導機械学習に基づく都市排水系油圧の高速かつ高精度な代理モデル構築手法を提案する。
提案手法は,HiFiモデルと比較してシミュレーション時間を1~2桁に短縮する。
したがって、概念的水理モデルよりも遅いが、全てのノードにおける水位、流れ、電荷のシミュレーションと排水網のリンクを可能にする。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We propose and demonstrate a new approach for fast and accurate surrogate
modelling of urban drainage system hydraulics based on physics-guided machine
learning. The surrogates are trained against a limited set of simulation
results from a hydrodynamic (HiFi) model. Our approach reduces simulation times
by one to two orders of magnitude compared to a HiFi model. It is thus slower
than e.g. conceptual hydrological models, but it enables simulations of water
levels, flows and surcharges in all nodes and links of a drainage network and
thus largely preserves the level of detail provided by HiFi models. Comparing
time series simulated by the surrogate and the HiFi model, R2 values in the
order of 0.9 are achieved. Surrogate training times are currently in the order
of one hour. However, they can likely be reduced through the application of
transfer learning and graph neural networks. Our surrogate approach will be
useful for interactive workshops in initial design phases of urban drainage
systems, as well as for real time applications. In addition, our model
formulation is generic and future research should investigate its application
for simulating other water systems.
- Abstract(参考訳): 本研究では,物理誘導機械学習に基づく都市排水系油圧の高速かつ高精度な代理モデル構築手法を提案する。
サーロゲートは、流体力学(hifi)モデルによる限られたシミュレーション結果に対して訓練される。
提案手法は,HiFiモデルと比較してシミュレーション時間を1~2桁に短縮する。
したがって、概念的な水理モデルよりも遅いが、全てのノードにおける水位、流れ、電荷のシミュレーションと排水網のリンクを可能にし、hifiモデルによって提供される詳細レベルをほとんど保持する。
代理とHiFiモデルでシミュレートされた時系列を比較すると、0.9の順のR2値が得られる。
サロゲートのトレーニング時間は、現在1時間である。
しかし、転送学習とグラフニューラルネットワークの応用によって、それらを減らすことができる。
我々のサロゲートアプローチは、都市排水システムの初期設計段階におけるインタラクティブなワークショップや、リアルタイムアプリケーションに有用である。
また, モデル定式化は汎用的であり, その他の水系シミュレーションへの応用について検討する。
関連論文リスト
- Machine learning surrogates for efficient hydrologic modeling: Insights from stochastic simulations of managed aquifer recharge [0.0]
プロセスベース水理モデルと機械学習サロゲートモデルのためのハイブリッドモデリングワークフローを提案する。
ケーススタディでは, このワークフローを, 将来的な管理型帯水層帯水層における飽和地下水流のシミュレーションに応用する。
以上の結果から,MLサロゲートモデルでは,絶対誤差率10%以下で絶対誤差を達成でき,大域保存の順序付けが可能であることが示唆された。
論文 参考訳(メタデータ) (2024-07-30T15:24:27Z) - Graph neural network-based surrogate modelling for real-time hydraulic prediction of urban drainage networks [1.8073031015436376]
物理モデルに基づくモデルは、計算に時間がかかり、都市排水網のリアルタイムシナリオには有効ではない。
完全に接続されたニューラルネットワーク(NN)は、潜在的な代理モデルであるが、複雑なターゲットに適合する際の解釈可能性と効率の低下に悩まされる可能性がある。
本研究は, 排水網の水理予測問題に対する流路モデルのGNNに基づくサロゲートを提案する。
論文 参考訳(メタデータ) (2024-04-16T07:08:04Z) - Physics-Informed Graph Neural Networks for Water Distribution Systems [3.9675504428227457]
水道システム(WDS)は、都市開発に欠かせない重要なインフラの不可欠な部分である。
WDSにおける油圧状態推定のための物理インフォームドディープラーニング(DL)モデルを提案する。
本モデルでは,2つの油圧状態特徴を推定するために水圧原理を用いる。
論文 参考訳(メタデータ) (2024-03-27T13:51:26Z) - Continual learning autoencoder training for a particle-in-cell
simulation via streaming [52.77024349608834]
今後のエクサスケール時代は 次世代の物理シミュレーションを 高解像度で提供します
これらのシミュレーションは高解像度であり、ディスク上に大量のシミュレーションデータを格納することはほぼ不可能であるため、機械学習モデルのトレーニングに影響を与える。
この研究は、ディスク上のデータなしで、実行中のシミュレーションにニューラルネットワークを同時にトレーニングするアプローチを示す。
論文 参考訳(メタデータ) (2022-11-09T09:55:14Z) - Physics-informed machine learning with differentiable programming for
heterogeneous underground reservoir pressure management [64.17887333976593]
地下貯水池の過圧化を避けることは、CO2の沈殿や排水の注入といった用途に欠かせない。
地中における複雑な不均一性のため, 噴射・抽出制御による圧力管理は困難である。
過圧化防止のための流体抽出速度を決定するために、フル物理モデルと機械学習を用いた微分可能プログラミングを用いる。
論文 参考訳(メタデータ) (2022-06-21T20:38:13Z) - Learning Large-scale Subsurface Simulations with a Hybrid Graph Network
Simulator [57.57321628587564]
本研究では3次元地下流体の貯留層シミュレーションを学習するためのハイブリッドグラフネットワークシミュレータ (HGNS) を提案する。
HGNSは、流体の進化をモデル化する地下グラフニューラルネットワーク(SGNN)と、圧力の進化をモデル化する3D-U-Netで構成されている。
産業標準地下フローデータセット(SPE-10)と1100万セルを用いて,HGNSが標準地下シミュレータの18倍の推算時間を短縮できることを実証した。
論文 参考訳(メタデータ) (2022-06-15T17:29:57Z) - Physics-Inspired Temporal Learning of Quadrotor Dynamics for Accurate
Model Predictive Trajectory Tracking [76.27433308688592]
クオーロタのシステムダイナミクスを正確にモデル化することは、アジャイル、安全、安定したナビゲーションを保証する上で非常に重要です。
本稿では,ロボットの経験から,四重項系の力学を純粋に学習するための新しい物理インスパイアされた時間畳み込みネットワーク(PI-TCN)を提案する。
提案手法は,スパース時間的畳み込みと高密度フィードフォワード接続の表現力を組み合わせて,正確なシステム予測を行う。
論文 参考訳(メタデータ) (2022-06-07T13:51:35Z) - Fast Aquatic Swimmer Optimization with Differentiable Projective
Dynamics and Neural Network Hydrodynamic Models [23.480913364381664]
水面移動(Aquatic locomotion)は、生物学者や技術者が関心を持つ古典的な流体構造相互作用(FSI)問題である。
本研究では, 変形可能なスイマーの固体構造に対する2次元数値シミュレーションを組み合わせた, FSI に完全微分可能な新しいハイブリッド手法を提案する。
2次元キャランギフォームスイマーにおけるハイブリッドシミュレータの計算効率と微分性を示す。
論文 参考訳(メタデータ) (2022-03-30T15:21:44Z) - Deep Bayesian Active Learning for Accelerating Stochastic Simulation [74.58219903138301]
Interactive Neural Process(INP)は、シミュレーションとアクティブな学習アプローチのためのディープラーニングフレームワークである。
能動的学習のために,NPベースモデルの潜時空間で計算された新しい取得関数Latent Information Gain (LIG)を提案する。
その結果,STNPは学習環境のベースラインを上回り,LIGは能動学習の最先端を達成していることがわかった。
論文 参考訳(メタデータ) (2021-06-05T01:31:51Z) - Machine learning for rapid discovery of laminar flow channel wall
modifications that enhance heat transfer [56.34005280792013]
任意の, 平坦な, 非平坦なチャネルの正確な数値シミュレーションと, ドラッグ係数とスタントン数を予測する機械学習モデルを組み合わせる。
畳み込みニューラルネットワーク(CNN)は,数値シミュレーションのわずかな時間で,目標特性を正確に予測できることを示す。
論文 参考訳(メタデータ) (2021-01-19T16:14:02Z) - Learning Incompressible Fluid Dynamics from Scratch -- Towards Fast,
Differentiable Fluid Models that Generalize [7.707887663337803]
最近のディープラーニングベースのアプローチは、膨大なスピードアップを約束するが、新しい流体ドメインには一般化しない。
本稿では,新しい流体領域に一般化する物理制約付きトレーニング手法を提案する。
トレーニングされたモデルの速度と一般化能力を示すインタラクティブなリアルタイムデモを提示する。
論文 参考訳(メタデータ) (2020-06-15T20:59:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。