論文の概要: Physics-Informed Graph Neural Networks for Water Distribution Systems
- arxiv url: http://arxiv.org/abs/2403.18570v1
- Date: Wed, 27 Mar 2024 13:51:26 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-28 16:48:33.189522
- Title: Physics-Informed Graph Neural Networks for Water Distribution Systems
- Title(参考訳): 物理インフォームドグラフニューラルネットワークによる配水システムの構築
- Authors: Inaam Ashraf, Janine Strotherm, Luca Hermes, Barbara Hammer,
- Abstract要約: 水道システム(WDS)は、都市開発に欠かせない重要なインフラの不可欠な部分である。
WDSにおける油圧状態推定のための物理インフォームドディープラーニング(DL)モデルを提案する。
本モデルでは,2つの油圧状態特徴を推定するために水圧原理を用いる。
- 参考スコア(独自算出の注目度): 3.9675504428227457
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Water distribution systems (WDS) are an integral part of critical infrastructure which is pivotal to urban development. As 70% of the world's population will likely live in urban environments in 2050, efficient simulation and planning tools for WDS play a crucial role in reaching UN's sustainable developmental goal (SDG) 6 - "Clean water and sanitation for all". In this realm, we propose a novel and efficient machine learning emulator, more precisely, a physics-informed deep learning (DL) model, for hydraulic state estimation in WDS. Using a recursive approach, our model only needs a few graph convolutional neural network (GCN) layers and employs an innovative algorithm based on message passing. Unlike conventional machine learning tasks, the model uses hydraulic principles to infer two additional hydraulic state features in the process of reconstructing the available ground truth feature in an unsupervised manner. To the best of our knowledge, this is the first DL approach to emulate the popular hydraulic simulator EPANET, utilizing no additional information. Like most DL models and unlike the hydraulic simulator, our model demonstrates vastly faster emulation times that do not increase drastically with the size of the WDS. Moreover, we achieve high accuracy on the ground truth and very similar results compared to the hydraulic simulator as demonstrated through experiments on five real-world WDS datasets.
- Abstract(参考訳): 水道システム(WDS)は、都市開発に欠かせない重要なインフラの不可欠な部分である。
世界の人口の70%が2050年までに都市環境に居住する可能性が高いため、WDSの効率的なシミュレーションと計画ツールが、国連の持続可能な開発目標(SDG)6「すべてのクリーンな水と衛生」を達成する上で重要な役割を担っている。
本稿では,WDSにおける油圧状態推定のための新しい効率的な機械学習エミュレータ,より正確には物理インフォームドディープラーニング(DL)モデルを提案する。
再帰的アプローチを用いることで、我々のモデルはいくつかのグラフ畳み込みニューラルネットワーク(GCN)層のみを必要とし、メッセージパッシングに基づいた革新的なアルゴリズムを採用している。
従来の機械学習のタスクとは異なり、このモデルは、教師なしの方法で利用可能な地上の真実の特徴を再構築する過程で、2つの追加の油圧状態特徴を推論するために水圧原理を使用する。
我々の知る限り、これは一般的な油圧シミュレータEPANETをエミュレートする最初のDLアプローチであり、追加情報を使用しない。
多くのDLモデルと同様に、油圧シミュレータとは異なり、我々のモデルは、WDSのサイズに比例して大幅に増加しない、はるかに高速なエミュレーション時間を示す。
さらに,5つの実世界のWDSデータセットを用いた実験により,油圧シミュレータと比較して,地上の真実と非常によく似た結果を得ることができた。
関連論文リスト
- Gaussian Splatting to Real World Flight Navigation Transfer with Liquid Networks [93.38375271826202]
本研究では,シミュレート・トゥ・リアルな視覚四重項ナビゲーションタスクにおける分布シフトに対する一般化とロバスト性を改善する手法を提案する。
まず,擬似飛行力学とガウススプラッティングを統合してシミュレータを構築し,その後,液状ニューラルネットワークを用いてロバストなナビゲーションポリシーを訓練する。
このようにして、我々は3次元ガウススプラッティングラディアンス場レンダリング、専門家による実演訓練データのプログラミング、およびLiquid Networkのタスク理解能力の進歩を組み合わせたフルスタックの模倣学習プロトコルを得る。
論文 参考訳(メタデータ) (2024-06-21T13:48:37Z) - Graph neural network-based surrogate modelling for real-time hydraulic prediction of urban drainage networks [1.8073031015436376]
物理モデルに基づくモデルは、計算に時間がかかり、都市排水網のリアルタイムシナリオには有効ではない。
完全に接続されたニューラルネットワーク(NN)は、潜在的な代理モデルであるが、複雑なターゲットに適合する際の解釈可能性と効率の低下に悩まされる可能性がある。
本研究は, 排水網の水理予測問題に対する流路モデルのGNNに基づくサロゲートを提案する。
論文 参考訳(メタデータ) (2024-04-16T07:08:04Z) - Bridging the Sim-to-Real Gap with Bayesian Inference [53.61496586090384]
データからロボットダイナミクスを学習するためのSIM-FSVGDを提案する。
我々は、ニューラルネットワークモデルのトレーニングを規則化するために、低忠実度物理プリエンスを使用します。
高性能RCレースカーシステムにおけるSIM-to-realギャップのブリッジ化におけるSIM-FSVGDの有効性を実証する。
論文 参考訳(メタデータ) (2024-03-25T11:29:32Z) - Graph Neural Networks for Pressure Estimation in Water Distribution
Systems [44.99833362998488]
水分配ネットワーク(WDN)における圧力と流量の推定により、水管理会社は制御操作を最適化できる。
物理に基づくモデリングとデータ駆動型アプローチであるグラフニューラルネットワーク(GNN)を組み合わせて,圧力推定問題に対処する。
我々のGNNモデルでは、オランダの大規模WDNの圧力は1.94mH$O、MAPEは7%と見積もられている。
論文 参考訳(メタデータ) (2023-11-17T15:30:12Z) - Training Deep Surrogate Models with Large Scale Online Learning [48.7576911714538]
ディープラーニングアルゴリズムは、PDEの高速解を得るための有効な代替手段として登場した。
モデルは通常、ソルバによって生成された合成データに基づいてトレーニングされ、ディスクに格納され、トレーニングのために読み返される。
ディープサロゲートモデルのためのオープンソースのオンライントレーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2023-06-28T12:02:27Z) - An evaluation of deep learning models for predicting water depth
evolution in urban floods [59.31940764426359]
高空間分解能水深予測のための異なる深層学習モデルの比較を行った。
深層学習モデルはCADDIESセル-オートマタフラッドモデルによってシミュレーションされたデータを再現するために訓練される。
その結果,ディープラーニングモデルでは,他の手法に比べて誤差が低いことがわかった。
論文 参考訳(メタデータ) (2023-02-20T16:08:54Z) - Physics-informed machine learning with differentiable programming for
heterogeneous underground reservoir pressure management [64.17887333976593]
地下貯水池の過圧化を避けることは、CO2の沈殿や排水の注入といった用途に欠かせない。
地中における複雑な不均一性のため, 噴射・抽出制御による圧力管理は困難である。
過圧化防止のための流体抽出速度を決定するために、フル物理モデルと機械学習を用いた微分可能プログラミングを用いる。
論文 参考訳(メタデータ) (2022-06-21T20:38:13Z) - Learning Large-scale Subsurface Simulations with a Hybrid Graph Network
Simulator [57.57321628587564]
本研究では3次元地下流体の貯留層シミュレーションを学習するためのハイブリッドグラフネットワークシミュレータ (HGNS) を提案する。
HGNSは、流体の進化をモデル化する地下グラフニューラルネットワーク(SGNN)と、圧力の進化をモデル化する3D-U-Netで構成されている。
産業標準地下フローデータセット(SPE-10)と1100万セルを用いて,HGNSが標準地下シミュレータの18倍の推算時間を短縮できることを実証した。
論文 参考訳(メタデータ) (2022-06-15T17:29:57Z) - Accelerating hydrodynamic simulations of urban drainage systems with
physics-guided machine learning [0.0]
本研究では,物理誘導機械学習に基づく都市排水系油圧の高速かつ高精度な代理モデル構築手法を提案する。
提案手法は,HiFiモデルと比較してシミュレーション時間を1~2桁に短縮する。
したがって、概念的水理モデルよりも遅いが、全てのノードにおける水位、流れ、電荷のシミュレーションと排水網のリンクを可能にする。
論文 参考訳(メタデータ) (2022-05-24T19:44:46Z) - Echo State Network for two-dimensional turbulent moist Rayleigh-B\'enard
convection [0.0]
モイストrayleigh-b'enard対流の進化を近似するためにエコー状態ネットワークを適用する。
我々のモデルは複雑なダイナミクスを学習することができると結論づける。
論文 参考訳(メタデータ) (2021-01-27T11:27:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。