Probing the Limits of Dispersive Quantum Thermometry with a Nonlinear Mach-Zehnder-Based Quantum Simulator
- URL: http://arxiv.org/abs/2507.04246v1
- Date: Sun, 06 Jul 2025 05:15:41 GMT
- Title: Probing the Limits of Dispersive Quantum Thermometry with a Nonlinear Mach-Zehnder-Based Quantum Simulator
- Authors: Daniel Y. Akamatsu, Lucas Ferreira R. de Moura, Gabriella G. Damas, Gentil D. de Moraes Neto, Victor Montenegro, Norton G. de Almeida,
- Abstract summary: Temperature estimation, known as thermometry, is a critical sensing task for physical systems operating in the quantum regime.<n>In this work, we estimate the unknown temperature of a collection of identical and independent two-level atoms dispersively probed by a single-mode quantized electromagnetic field.<n>We propose and implement a quantum thermometer based on a nonlinear Mach-Zehnder interferometer, which we realize through quantum digital simulation.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Temperature estimation, known as thermometry, is a critical sensing task for physical systems operating in the quantum regime. Indeed, thermal fluctuations can significantly degrade quantum coherence. Therefore, accurately determining the system's operating temperature is a crucial first step toward distinguishing thermal noise from other sources of decoherence. In this work, we estimate the unknown temperature of a collection of identical and independent two-level atoms dispersively probed by a single-mode quantized electromagnetic field. In contrast to previous works, we present an analytical sensing analysis demonstrating that the joint atom-field evolution -- without any assumptions or approximations -- can achieve, at best, the standard quantum limit of precision concerning the number of field excitations. To investigate our analysis further, we propose and implement a quantum thermometer based on a nonlinear Mach-Zehnder interferometer, which we realize through quantum digital simulation. Our simulation is highly flexible regarding atomic state preparation, allowing the initialization of atomic ensembles with positive and effective negative temperatures. This makes our platform a promising and versatile testbed for benchmarking thermometric capabilities in current quantum simulators.
Related papers
- Thermalization and Criticality on an Analog-Digital Quantum Simulator [133.58336306417294]
We present a quantum simulator comprising 69 superconducting qubits which supports both universal quantum gates and high-fidelity analog evolution.
We observe signatures of the classical Kosterlitz-Thouless phase transition, as well as strong deviations from Kibble-Zurek scaling predictions.
We digitally prepare the system in pairwise-entangled dimer states and image the transport of energy and vorticity during thermalization.
arXiv Detail & Related papers (2024-05-27T17:40:39Z) - Coherence-enhanced single-qubit thermometry out of equilibrium [0.0]
We consider a finite-dimensional quantum system, employed as a quantum thermometer, in contact with a thermal inducing Markov bathian thermalization dynamics.
We prove that the sensitivity of the thermometer, quantified by the quantum Fisher information, is enhanced by the quantum coherence in its initial state.
arXiv Detail & Related papers (2024-05-23T11:11:01Z) - Quantum Thermal State Preparation [39.91303506884272]
We introduce simple continuous-time quantum Gibbs samplers for simulating quantum master equations.
We construct the first provably accurate and efficient algorithm for preparing certain purified Gibbs states.
Our algorithms' costs have a provable dependence on temperature, accuracy, and the mixing time.
arXiv Detail & Related papers (2023-03-31T17:29:56Z) - Variational quantum simulation of the quantum critical regime [0.0]
We propose a variational approach, which minimizes the variational free energy, to simulate and locate the quantum critical regime on a quantum computer.
Our work suggests a practical way as well as a first step for investigating quantum critical systems at finite temperatures on quantum devices with few qubits.
arXiv Detail & Related papers (2023-02-15T02:59:41Z) - Probing finite-temperature observables in quantum simulators of spin
systems with short-time dynamics [62.997667081978825]
We show how finite-temperature observables can be obtained with an algorithm motivated from the Jarzynski equality.
We show that a finite temperature phase transition in the long-range transverse field Ising model can be characterized in trapped ion quantum simulators.
arXiv Detail & Related papers (2022-06-03T18:00:02Z) - Demonstrating Quantum Microscopic Reversibility Using Coherent States of
Light [58.8645797643406]
We propose and experimentally test a quantum generalization of the microscopic reversibility when a quantum system interacts with a heat bath.
We verify that the quantum modification for the principle of microscopic reversibility is critical in the low-temperature limit.
arXiv Detail & Related papers (2022-05-26T00:25:29Z) - Criticality-enhanced quantum sensor at finite temperature [44.23814225750129]
We propose a thermodynamic-criticality-enhanced quantum sensing scenario at finite temperature.
It is revealed that the thermodynamic criticality of the Dicke model can significantly improve the sensing precision.
arXiv Detail & Related papers (2021-10-15T02:39:31Z) - Taking the temperature of a pure quantum state [55.41644538483948]
Temperature is a deceptively simple concept that still raises deep questions at the forefront of quantum physics research.
We propose a scheme to measure the temperature of such pure states through quantum interference.
arXiv Detail & Related papers (2021-03-30T18:18:37Z) - Evolution of a Non-Hermitian Quantum Single-Molecule Junction at
Constant Temperature [62.997667081978825]
We present a theory for describing non-Hermitian quantum systems embedded in constant-temperature environments.
We find that the combined action of probability losses and thermal fluctuations assists quantum transport through the molecular junction.
arXiv Detail & Related papers (2021-01-21T14:33:34Z) - Adiabatic Sensing Technique for Optimal Temperature Estimation using
Trapped Ions [64.31011847952006]
We propose an adiabatic method for optimal phonon temperature estimation using trapped ions.
The relevant information of the phonon thermal distributions can be transferred to the collective spin-degree of freedom.
We show that each of the thermal state probabilities is adiabatically mapped onto the respective collective spin-excitation configuration.
arXiv Detail & Related papers (2020-12-16T12:58:08Z) - Spectroscopy and critical quantum thermometry in the ultrastrong
coupling regime [0.0]
We show that depending on the initial state of the coupled system, the vacuum Rabi splitting manifests significant asymmetries.
We obtain the ultimate bounds on the estimation of temperature that remain valid in the ultrastrong coupling regime.
arXiv Detail & Related papers (2020-09-04T03:29:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.