Variational Monte Carlo Approach to Partial Differential Equations with
Neural Networks
- URL: http://arxiv.org/abs/2206.01927v1
- Date: Sat, 4 Jun 2022 07:36:35 GMT
- Title: Variational Monte Carlo Approach to Partial Differential Equations with
Neural Networks
- Authors: Moritz Reh, Martin G\"arttner
- Abstract summary: We develop a variational approach for solving partial differential equations governing the evolution of high dimensional probability distributions.
Our approach naturally works on the unbounded continuous domain and encodes the full probability density function through its variational parameters.
For the considered benchmark cases we observe excellent agreement with numerical solutions as well as analytical solutions in regimes inaccessible to traditional computational approaches.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The accurate numerical solution of partial differential equations is a
central task in numerical analysis allowing to model a wide range of natural
phenomena by employing specialized solvers depending on the scenario of
application. Here, we develop a variational approach for solving partial
differential equations governing the evolution of high dimensional probability
distributions. Our approach naturally works on the unbounded continuous domain
and encodes the full probability density function through its variational
parameters, which are adapted dynamically during the evolution to optimally
reflect the dynamics of the density. For the considered benchmark cases we
observe excellent agreement with numerical solutions as well as analytical
solutions in regimes inaccessible to traditional computational approaches.
Related papers
- On the Trajectory Regularity of ODE-based Diffusion Sampling [79.17334230868693]
Diffusion-based generative models use differential equations to establish a smooth connection between a complex data distribution and a tractable prior distribution.
In this paper, we identify several intriguing trajectory properties in the ODE-based sampling process of diffusion models.
arXiv Detail & Related papers (2024-05-18T15:59:41Z) - Diffusion Tempering Improves Parameter Estimation with Probabilistic Integrators for Ordinary Differential Equations [34.500484733973536]
Ordinary differential equations (ODEs) are widely used to describe dynamical systems in science, but identifying parameters that explain experimental measurements is challenging.
We propose diffusion tempering, a novel regularization technique for probabilistic numerical methods which improves convergence of gradient-based parameter optimization in ODEs.
We demonstrate that our method is effective for dynamical systems of different complexity and show that it obtains reliable parameter estimates for a Hodgkin-Huxley model with a practically relevant number of parameters.
arXiv Detail & Related papers (2024-02-19T15:36:36Z) - Response Theory via Generative Score Modeling [0.0]
We introduce an approach for analyzing the responses of dynamical systems to external perturbations that combines score-based generative modeling with the Generalized Fluctuation-Dissipation Theorem (GFDT)
The methodology enables accurate estimation of system responses, including those with non-Gaussian statistics.
arXiv Detail & Related papers (2024-02-01T21:38:10Z) - Predicting Ordinary Differential Equations with Transformers [65.07437364102931]
We develop a transformer-based sequence-to-sequence model that recovers scalar ordinary differential equations (ODEs) in symbolic form from irregularly sampled and noisy observations of a single solution trajectory.
Our method is efficiently scalable: after one-time pretraining on a large set of ODEs, we can infer the governing law of a new observed solution in a few forward passes of the model.
arXiv Detail & Related papers (2023-07-24T08:46:12Z) - Robust scalable initialization for Bayesian variational inference with
multi-modal Laplace approximations [0.0]
Variational mixtures with full-covariance structures suffer from a quadratic growth due to variational parameters with the number of parameters.
We propose a method for constructing an initial Gaussian model approximation that can be used to warm-start variational inference.
arXiv Detail & Related papers (2023-07-12T19:30:04Z) - Distributed Bayesian Learning of Dynamic States [65.7870637855531]
The proposed algorithm is a distributed Bayesian filtering task for finite-state hidden Markov models.
It can be used for sequential state estimation, as well as for modeling opinion formation over social networks under dynamic environments.
arXiv Detail & Related papers (2022-12-05T19:40:17Z) - Tunable Complexity Benchmarks for Evaluating Physics-Informed Neural
Networks on Coupled Ordinary Differential Equations [64.78260098263489]
In this work, we assess the ability of physics-informed neural networks (PINNs) to solve increasingly-complex coupled ordinary differential equations (ODEs)
We show that PINNs eventually fail to produce correct solutions to these benchmarks as their complexity increases.
We identify several reasons why this may be the case, including insufficient network capacity, poor conditioning of the ODEs, and high local curvature, as measured by the Laplacian of the PINN loss.
arXiv Detail & Related papers (2022-10-14T15:01:32Z) - Message Passing Neural PDE Solvers [60.77761603258397]
We build a neural message passing solver, replacing allally designed components in the graph with backprop-optimized neural function approximators.
We show that neural message passing solvers representationally contain some classical methods, such as finite differences, finite volumes, and WENO schemes.
We validate our method on various fluid-like flow problems, demonstrating fast, stable, and accurate performance across different domain topologies, equation parameters, discretizations, etc., in 1D and 2D.
arXiv Detail & Related papers (2022-02-07T17:47:46Z) - A Variational Inference Approach to Inverse Problems with Gamma
Hyperpriors [60.489902135153415]
This paper introduces a variational iterative alternating scheme for hierarchical inverse problems with gamma hyperpriors.
The proposed variational inference approach yields accurate reconstruction, provides meaningful uncertainty quantification, and is easy to implement.
arXiv Detail & Related papers (2021-11-26T06:33:29Z) - Variational Inference for Continuous-Time Switching Dynamical Systems [29.984955043675157]
We present a model based on an Markov jump process modulating a subordinated diffusion process.
We develop a new continuous-time variational inference algorithm.
We extensively evaluate our algorithm under the model assumption and for real-world examples.
arXiv Detail & Related papers (2021-09-29T15:19:51Z) - Approximate Latent Force Model Inference [1.3927943269211591]
latent force models offer an interpretable alternative to purely data driven tools for inference in dynamical systems.
We show that a neural operator approach can scale our model to thousands of instances, enabling fast, distributed computation.
arXiv Detail & Related papers (2021-09-24T09:55:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.