論文の概要: JigsawHSI: a network for Hyperspectral Image classification
- arxiv url: http://arxiv.org/abs/2206.02327v1
- Date: Mon, 6 Jun 2022 02:56:51 GMT
- ステータス: 処理完了
- システム内更新日: 2022-06-07 14:14:32.262800
- Title: JigsawHSI: a network for Hyperspectral Image classification
- Title(参考訳): JigsawHSI:ハイパースペクトル画像分類のためのネットワーク
- Authors: Jaime Moraga, H. Sebnem Duzgun
- Abstract要約: 本稿では、インセプションに基づく畳み込みニューラルネットワーク(CNN)であるJigsawHSIの性能について述べる。
ネットワークはスペクトル空間の3D-CNNであるHybridSNと比較され、2D-CNNはデータセットの最先端結果を達成する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: This article describes the performance of JigsawHSI,a convolutional neural
network (CNN) based on Inception but tailored for geoscientific analyses, on
classification with the Indian Pines, Pavia University and Salinas
hyperspectral image data sets. The network is compared against HybridSN, a
spectral-spatial 3D-CNN followed by 2D-CNN that achieves state-of-the-art
results in the datasets. This short article proves that JigsawHSI is able to
meet or exceed HybridSN performance in all three cases. Additionally, the code
and toolkit are made available.
- Abstract(参考訳): 本稿ではインセプションに基づく畳み込みニューラルネットワーク(CNN)であるJigsawHSIの性能について述べる。
ネットワークはスペクトル空間の3D-CNNであるHybridSNと比較され、2D-CNNはデータセットの最先端結果を達成する。
この記事では、JigsawHSIが3つのケースすべてでHybridSNのパフォーマンスを達成または超えることを証明します。
さらに、コードとツールキットも利用可能である。
関連論文リスト
- CNN2GNN: How to Bridge CNN with GNN [59.42117676779735]
蒸留によりCNNとGNNを統一する新しいCNN2GNNフレームワークを提案する。
Mini-ImageNetにおける蒸留ブースターの2層GNNの性能は、ResNet152のような数十層を含むCNNよりもはるかに高い。
論文 参考訳(メタデータ) (2024-04-23T08:19:08Z) - Hybrid CNN Bi-LSTM neural network for Hyperspectral image classification [1.2691047660244332]
本稿では,3次元CNN,2次元CNN,Bi-LSTMを組み合わせたニューラルネットワークを提案する。
99.83、99.98、100%の精度を達成でき、それぞれIP、PU、SAデータセットにおける最先端モデルのトレーニング可能なパラメータは30%に過ぎなかった。
論文 参考訳(メタデータ) (2024-02-15T15:46:13Z) - GraphCSPN: Geometry-Aware Depth Completion via Dynamic GCNs [49.55919802779889]
本稿では,グラフ畳み込みに基づく空間伝搬ネットワーク(GraphCSPN)を提案する。
本研究では、幾何学的表現学習において、畳み込みニューラルネットワークとグラフニューラルネットワークを相補的に活用する。
提案手法は,数段の伝搬ステップのみを使用する場合と比較して,最先端の性能を実現する。
論文 参考訳(メタデータ) (2022-10-19T17:56:03Z) - Two-Stream Graph Convolutional Network for Intra-oral Scanner Image
Segmentation [133.02190910009384]
本稿では,2ストリームグラフ畳み込みネットワーク(TSGCN)を提案する。
TSGCNは3次元歯(表面)セグメンテーションにおいて最先端の方法よりも優れています。
論文 参考訳(メタデータ) (2022-04-19T10:41:09Z) - Dive into Layers: Neural Network Capacity Bounding using Algebraic
Geometry [55.57953219617467]
ニューラルネットワークの学習性はそのサイズと直接関連していることを示す。
入力データとニューラルネットワークのトポロジ的幾何学的複雑さを測定するためにベッチ数を用いる。
実世界のデータセットMNISTで実験を行い、分析結果と結論を検証した。
論文 参考訳(メタデータ) (2021-09-03T11:45:51Z) - Hyperspectral Image Classification: Artifacts of Dimension Reduction on
Hybrid CNN [1.2875323263074796]
2Dおよび3DCNNモデルは、ハイパースペクトル画像の空間的およびスペクトル情報を利用するのに非常に効率的であることが証明されている。
この研究は、計算コストを大幅に削減する軽量CNN(3Dと2D-CNN)モデルを提案した。
論文 参考訳(メタデータ) (2021-01-25T18:43:57Z) - TSGCNet: Discriminative Geometric Feature Learning with Two-Stream
GraphConvolutional Network for 3D Dental Model Segmentation [141.2690520327948]
2流グラフ畳み込みネットワーク(TSGCNet)を提案し、異なる幾何学的特性から多視点情報を学ぶ。
3次元口腔内スキャナーで得られた歯科モデルのリアルタイムデータセットを用いてTSGCNetの評価を行った。
論文 参考訳(メタデータ) (2020-12-26T08:02:56Z) - Learning Hybrid Representations for Automatic 3D Vessel Centerline
Extraction [57.74609918453932]
3次元医用画像からの血管の自動抽出は血管疾患の診断に不可欠である。
既存の方法では、3次元画像からそのような細い管状構造を分割する際に、抽出された容器の不連続に悩まされることがある。
抽出された船舶の連続性を維持するためには、地球的幾何学を考慮に入れる必要があると論じる。
この課題を解決するためのハイブリッド表現学習手法を提案します。
論文 参考訳(メタデータ) (2020-12-14T05:22:49Z) - A Fast 3D CNN for Hyperspectral Image Classification [0.456877715768796]
ハイパースペクトルイメージング(HSI)は、多くの現実世界の用途に広く利用されている。
2次元畳み込みニューラルネットワーク(CNN)は、HSICがスペクトル空間情報の両方に大きく依存する、実行可能なアプローチである。
本研究は,空間スペクトル特徴写像を併用した3次元CNNモデルを提案する。
論文 参考訳(メタデータ) (2020-04-29T12:57:36Z) - Hyperspectral Classification Based on 3D Asymmetric Inception Network
with Data Fusion Transfer Learning [36.05574127972413]
私たちはまず、3D非対称なインセプションネットワークであるAINetを提供し、過度に適合する問題を克服します。
HSIデータの空間的コンテキストに対するスペクトルシグネチャの強調により、AINetはこの機能を効果的に伝達し、分類することができる。
論文 参考訳(メタデータ) (2020-02-11T06:37:34Z) - Learning Hyperspectral Feature Extraction and Classification with
ResNeXt Network [2.9967206019304937]
ハイパースペクトル画像分類 (HSI) は標準的なリモートセンシングタスクであり、各画像ピクセルには地球表面の物理的土地被覆を示すラベルが与えられる。
ハイパースペクトル画像におけるスペクトルおよび空間的手がかりの両利用により,ハイパースペクトル画像分類における分類精度が向上した。
ハイパースペクトル画像から空間的およびスペクトル的手がかりを抽出するために3次元畳み込みニューラルネットワーク(3D-CNN)のみを使用すると、パラメータの爆発が起こり、計算コストが高くなる。
スペクトル空間情報をモデル化するための3次元畳み込みを利用したMixedSNと呼ばれるネットワークアーキテクチャを提案する。
論文 参考訳(メタデータ) (2020-02-07T01:54:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。