論文の概要: Minimising the Expected Posterior Entropy Yields Optimal Summary
Statistics
- arxiv url: http://arxiv.org/abs/2206.02340v2
- Date: Sat, 30 Sep 2023 00:16:02 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-03 21:30:04.579608
- Title: Minimising the Expected Posterior Entropy Yields Optimal Summary
Statistics
- Title(参考訳): 期待される後エントロピー収量の最適統計量の最小化
- Authors: Till Hoffmann and Jukka-Pekka Onnela
- Abstract要約: 我々は,様々な要約のクラスを特徴付け,次元削減アルゴリズムを正しく解析することの重要性を実証する。
本稿では, 予測後エントロピー (EPE) を推定したモデルに基づいて最小化することにより, 要約を得る手法を提案する。
- 参考スコア(独自算出の注目度): 3.4592169908208845
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Extracting low-dimensional summary statistics from large datasets is
essential for efficient (likelihood-free) inference. We characterise different
classes of summaries and demonstrate their importance for correctly analysing
dimensionality reduction algorithms. We propose obtaining summaries by
minimising the expected posterior entropy (EPE) under the prior predictive
distribution of the model. Many existing methods are equivalent to or are
special or limiting cases of minimising the EPE. We develop a method to obtain
high-fidelity summaries that minimise the EPE; we apply it to benchmark and
real-world examples. We both offer a unifying perspective for obtaining
informative summaries and provide concrete recommendations for practitioners.
- Abstract(参考訳): 大規模なデータセットから低次元の要約統計を抽出することは、効率的な推論に欠かせない。
我々は,様々な要約のクラスを特徴付け,次元削減アルゴリズムを正しく解析することの重要性を示す。
本稿では,モデルの事前予測分布下での予測後エントロピー(epe)を最小化することで要約を得ることを提案する。
既存の多くのメソッドは、EPEを最小化する特別なケースまたは制限されたケースと同等または同等である。
EPEを最小化する高忠実度サマリーを得る手法を開発し,それをベンチマークや実世界の実例に適用する。
我々は共に、情報的な要約を得るための統一的な視点を提供し、実践者に具体的なレコメンデーションを提供する。
関連論文リスト
- Distributionally Robust Optimization as a Scalable Framework to Characterize Extreme Value Distributions [22.765095010254118]
本研究の目的は分散ロバストな最適化 (DRO) 推定器の開発であり、特に多次元極値理論 (EVT) の統計量についてである。
点過程の空間における半パラメトリックな最大安定制約によって予測されるDRO推定器について検討した。
両手法は, 合成データを用いて検証し, 所定の特性を回復し, 提案手法の有効性を検証する。
論文 参考訳(メタデータ) (2024-07-31T19:45:27Z) - Regression-aware Inference with LLMs [52.764328080398805]
提案手法は,一般的な回帰と評価指標に準最適であることを示す。
本稿では,ベイズ最適解を推定し,サンプル応答からクローズド形式の評価指標を推定する代替推論手法を提案する。
論文 参考訳(メタデータ) (2024-03-07T03:24:34Z) - Prediction-Oriented Bayesian Active Learning [51.426960808684655]
予測情報ゲイン(EPIG)は、パラメータではなく予測空間における情報ゲインを測定する。
EPIGは、さまざまなデータセットやモデルにわたるBALDと比較して、予測パフォーマンスが向上する。
論文 参考訳(メタデータ) (2023-04-17T10:59:57Z) - Variational Factorization Machines for Preference Elicitation in
Large-Scale Recommender Systems [17.050774091903552]
本稿では, 標準のミニバッチ降下勾配を用いて容易に最適化できる因子化機械 (FM) の変分定式化を提案する。
提案アルゴリズムは,ユーザおよび項目パラメータに近似した後続分布を学習し,予測に対する信頼区間を導出する。
いくつかのデータセットを用いて、予測精度の点で既存の手法と同等または優れた性能を示す。
論文 参考訳(メタデータ) (2022-12-20T00:06:28Z) - Fine-grained Retrieval Prompt Tuning [149.9071858259279]
微粒な検索プロンプトチューニングは, サンプルプロンプトと特徴適応の観点から, きめの細かい検索タスクを実行するために, 凍結した事前学習モデルを操る。
学習可能なパラメータが少ないFRPTは、広く使われている3つの細粒度データセットの最先端性能を実現する。
論文 参考訳(メタデータ) (2022-07-29T04:10:04Z) - Improving the Accuracy of Marginal Approximations in Likelihood-Free
Inference via Localisation [0.0]
高次元確率自由推論への有望なアプローチは、低次元の辺縁後部を推定する。
このような低次元近似は、一見直感的な要約統計選択において驚くほど貧弱であることを示す。
実装や自動化が容易な限界推定に対する代替手法を提案する。
論文 参考訳(メタデータ) (2022-07-14T04:56:44Z) - Statistical Analysis of Wasserstein Distributionally Robust Estimators [9.208007322096535]
データ駆動の最適化と学習問題において,分極分布に頑健な定式化を実行する統計的手法を検討する。
結果として得られる分布ロバスト最適化(DRO)の定式化は、最適な輸送現象を用いて規定される。
このチュートリアルは、min-maxの定式化によって選択された逆数の性質に関する洞察と、最適輸送射影のさらなる応用に捧げられている。
論文 参考訳(メタデータ) (2021-08-04T15:45:47Z) - Supervised PCA: A Multiobjective Approach [70.99924195791532]
制御主成分分析法(SPCA)
本研究では,これらの目的を両立させる新しいSPCA手法を提案する。
この手法は、任意の教師付き学習損失に対応し、統計的再構成により、一般化された線形モデルの新しい低ランク拡張を提供する。
論文 参考訳(メタデータ) (2020-11-10T18:46:58Z) - A maximum-entropy approach to off-policy evaluation in average-reward
MDPs [54.967872716145656]
この研究は、無限水平非カウントマルコフ決定過程(MDPs)における関数近似を伴うオフ・ポリティ・アセスメント(OPE)に焦点を当てる。
提案手法は,第1の有限サンプル OPE 誤差境界であり,既存の結果がエピソードおよびディスカウントケースを超えて拡張される。
この結果から,教師あり学習における最大エントロピー的アプローチを並列化して,十分な統計値を持つ指数関数型家族分布が得られた。
論文 参考訳(メタデータ) (2020-06-17T18:13:37Z) - Deep Dimension Reduction for Supervised Representation Learning [51.10448064423656]
本研究は,本質的な特徴を持つ学習表現の次元削減手法を提案する。
提案手法は, 十分次元還元法の非パラメトリック一般化である。
推定された深度非パラメトリック表現は、その余剰リスクが0に収束するという意味で一貫したものであることを示す。
論文 参考訳(メタデータ) (2020-06-10T14:47:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。