Relativistic Ritz approach to hydrogen-like atoms I: theoretical
considerations
- URL: http://arxiv.org/abs/2206.02494v2
- Date: Wed, 28 Sep 2022 16:53:48 GMT
- Title: Relativistic Ritz approach to hydrogen-like atoms I: theoretical
considerations
- Authors: David M. Jacobs
- Abstract summary: I present a long-distance relativistic effective theory describing hydrogen-like systems with arbitrary mass ratios.
Fitting the relativistic theory to the hydrogen energy levels predicted by bound-state QED indicates that it is superior to the canonical, nonrelativistic approach.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The Rydberg formula along with the Ritz quantum defect ansatz has been a
standard theoretical tool used in atomic physics since before the advent of
quantum mechanics, yet this approach has remained limited by its
non-relativistic foundation. Here I present a long-distance relativistic
effective theory describing hydrogen-like systems with arbitrary mass ratios,
thereby extending the canonical Ritz-like approach. Fitting the relativistic
theory to the hydrogen energy levels predicted by bound-state QED indicates
that it is superior to the canonical, nonrelativistic approach. An analytic
analysis reveals nonlinear consistency relations within the bound-state QED
level predictions that relate higher-order corrections to those at lower order,
providing guideposts for future perturbative calculations as well as insights
into the asymptotic behavior of Bethe logarithms. Applications of the approach
include fitting to atomic spectroscopic data, allowing for the determination
the fine-structure constant from large spectral data sets and also to check for
internal consistency of the data independently from bound-state QED.
Related papers
- Hamiltonian truncation tensor networks for quantum field theories [42.2225785045544]
We introduce a tensor network method for the classical simulation of continuous quantum field theories.
The method is built on Hamiltonian truncation and tensor network techniques.
One of the key developments is the exact construction of matrix product state representations of global projectors.
arXiv Detail & Related papers (2023-12-19T19:00:02Z) - Real-time dynamics of false vacuum decay [49.1574468325115]
We investigate false vacuum decay of a relativistic scalar field in the metastable minimum of an asymmetric double-well potential.
We employ the non-perturbative framework of the two-particle irreducible (2PI) quantum effective action at next-to-leading order in a large-N expansion.
arXiv Detail & Related papers (2023-10-06T12:44:48Z) - Non-Parametric Learning of Stochastic Differential Equations with Non-asymptotic Fast Rates of Convergence [65.63201894457404]
We propose a novel non-parametric learning paradigm for the identification of drift and diffusion coefficients of non-linear differential equations.
The key idea essentially consists of fitting a RKHS-based approximation of the corresponding Fokker-Planck equation to such observations.
arXiv Detail & Related papers (2023-05-24T20:43:47Z) - The Bethe-Salpeter QED wave equation for bound-state computations of
atoms and molecules [0.0]
Quantum electrodynamics has been established by the mid-twentieth century, primarily as a scattering theory.
bound states can be efficiently computed using robust and general methodologies.
A computational framework, with initial applications and future challenges in relation with precision spectroscopy, is also highlighted.
arXiv Detail & Related papers (2022-11-04T11:47:29Z) - Reexamination of the ground state Born-Oppenheimer Yb$_2$ potential [0.0]
The photoassociation spectroscopy of Yb dimer in gases is enough to improve the constraints on the new short-range gravity-like forces.
The ground-state interaction potential of ytterbium dimer is investigated.
arXiv Detail & Related papers (2021-07-21T20:53:37Z) - The Relativity Principle at the Foundation of Quantum Mechanics [0.0]
We show how one principle, Information Invariance & Continuity, at the foundation of axiomatic reconstructions maps to "no preferred reference frame"
This is in exact analogy to the relativity principle as it pertains to the invariant measurement of Planck's constant h for Stern-Gerlach (SG) spin measurements.
arXiv Detail & Related papers (2021-07-14T19:11:28Z) - Out-of-time-order correlations and the fine structure of eigenstate
thermalisation [58.720142291102135]
Out-of-time-orderors (OTOCs) have become established as a tool to characterise quantum information dynamics and thermalisation.
We show explicitly that the OTOC is indeed a precise tool to explore the fine details of the Eigenstate Thermalisation Hypothesis (ETH)
We provide an estimation of the finite-size scaling of $omega_textrmGOE$ for the general class of observables composed of sums of local operators in the infinite-temperature regime.
arXiv Detail & Related papers (2021-03-01T17:51:46Z) - Metrological complementarity reveals the Einstein-Podolsky-Rosen paradox [0.0]
The Einstein-Podolsky-Rosen paradox plays a fundamental role in our understanding of quantum mechanics.
It is associated with the possibility of predicting the results of non-commuting measurements with a precision that seems to violate the uncertainty principle.
This apparent contradiction to complementarity is made possible by nonclassical correlations stronger than entanglement, called steering.
arXiv Detail & Related papers (2020-09-17T17:46:44Z) - Probing eigenstate thermalization in quantum simulators via
fluctuation-dissipation relations [77.34726150561087]
The eigenstate thermalization hypothesis (ETH) offers a universal mechanism for the approach to equilibrium of closed quantum many-body systems.
Here, we propose a theory-independent route to probe the full ETH in quantum simulators by observing the emergence of fluctuation-dissipation relations.
Our work presents a theory-independent way to characterize thermalization in quantum simulators and paves the way to quantum simulate condensed matter pump-probe experiments.
arXiv Detail & Related papers (2020-07-20T18:00:02Z) - Estimation independence as an axiom for quantum uncertainty [0.0]
We show that a plausible principle of estimation independence, which requires that the estimation of momentum of one system must be independent of the position of another system, singles out the specific forms of the estimator.
arXiv Detail & Related papers (2020-05-12T07:12:17Z) - Theoretical methods for ultrastrong light-matter interactions [91.3755431537592]
This article reviews theoretical methods developed to understand cavity quantum electrodynamics in the ultrastrong-coupling regime.
The article gives a broad overview of the recent progress, ranging from analytical estimate of ground-state properties to proper computation of master equations.
Most of the article is devoted to effective models, relevant for the various experimental platforms in which the ultrastrong coupling has been reached.
arXiv Detail & Related papers (2020-01-23T18:09:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.