Heisenberg-limited metrology with coherent control on the probes'
configuration
- URL: http://arxiv.org/abs/2206.03052v1
- Date: Tue, 7 Jun 2022 07:06:33 GMT
- Title: Heisenberg-limited metrology with coherent control on the probes'
configuration
- Authors: Giulio Chiribella and Xiaobin Zhao
- Abstract summary: Heisenberg scaling, a quadratic improvement over the limits of classical statistics, is notoriously fragile to noise.
Here we show that this limitation can sometimes be lifted if the experimenter has the ability to probe physical processes in a coherent superposition.
We provide a parallel protocol that achieves Heisenberg scaling with respect to the probes' energy, as well as a sequential protocol that achieves Heisenberg scaling with respect to the total probing time.
- Score: 0.7614628596146599
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A central feature of quantum metrology is the possibility of Heisenberg
scaling, a quadratic improvement over the limits of classical statistics. This
scaling, however, is notoriously fragile to noise. While for some noise types
it can be restored through error correction, for other important types, such as
dephasing, the Heisenberg scaling appears to be irremediably lost. Here we show
that this limitation can sometimes be lifted if the experimenter has the
ability to probe physical processes in a coherent superposition of alternative
configurations. As a concrete example, we consider the problem of phase
estimation in the presence of a random phase kick, which in normal conditions
is known to prevent the Heisenberg scaling. We provide a parallel protocol that
achieves Heisenberg scaling with respect to the probes' energy, as well as a
sequential protocol that achieves Heisenberg scaling with respect to the total
probing time. In addition, we show that Heisenberg scaling can also be achieved
for frequency estimation in the presence of continuous-time dephasing noise, by
combining the superposition of paths with fast control operations.
Related papers
- Super-Heisenberg scaling in a triple point criticality [2.7963250184347745]
We develop adiabatic evolution protocols approaching a final point around the triple point to restrain excitations and lead to an exponential super-Heisenberg scaling.
This scaling behavior is quite valuable in practical parameter estimating experiments with limited coherence time.
arXiv Detail & Related papers (2024-09-21T07:27:59Z) - Achieving Heisenberg scaling by probe-ancilla interaction in quantum metrology [0.0]
Heisenberg scaling is an ultimate precision limit of parameter estimation allowed by the principles of quantum mechanics.
We show that interactions between the probes and an ancillary system may also increase the precision of parameter estimation to surpass the standard quantum limit.
Our protocol features in two aspects: (i) the Heisenberg scaling can be achieved by a product state of the probes, (ii) mere local measurement on the ancilla is sufficient.
arXiv Detail & Related papers (2024-07-23T23:11:50Z) - Realizing fracton order from long-range quantum entanglement in programmable Rydberg atom arrays [45.19832622389592]
Storing quantum information requires battling quantum decoherence, which results in a loss of information over time.
To achieve error-resistant quantum memory, one would like to store the information in a quantum superposition of degenerate states engineered in such a way that local sources of noise cannot change one state into another.
We show that this platform also allows to detect and correct certain types of errors en route to the goal of true error-resistant quantum memory.
arXiv Detail & Related papers (2024-07-08T12:46:08Z) - Probing finite-temperature observables in quantum simulators of spin
systems with short-time dynamics [62.997667081978825]
We show how finite-temperature observables can be obtained with an algorithm motivated from the Jarzynski equality.
We show that a finite temperature phase transition in the long-range transverse field Ising model can be characterized in trapped ion quantum simulators.
arXiv Detail & Related papers (2022-06-03T18:00:02Z) - Accessing the topological Mott insulator in cold atom quantum simulators
with realistic Rydberg dressing [58.720142291102135]
We investigate a realistic scenario for the quantum simulation of such systems using cold Rydberg-dressed atoms in optical lattices.
We perform a detailed analysis of the phase diagram at half- and incommensurate fillings, in the mean-field approximation.
We furthermore study the stability of the phases with respect to temperature within the mean-field approximation.
arXiv Detail & Related papers (2022-03-28T14:55:28Z) - Global Heisenberg scaling in noisy and practical phase estimation [52.70356457590653]
Heisenberg scaling characterizes the ultimate precision of parameter estimation enabled by quantum mechanics.
We study the attainability of strong, global notions of Heisenberg scaling in the fundamental problem of phase estimation.
arXiv Detail & Related papers (2021-10-05T06:57:55Z) - Heisenberg-limited Frequency Estimation via Driving through Quantum
Phase Transitions [1.4985830312023636]
We propose a quantum Ramsey interferometry to realize high-precision frequency estimation in spin-1 Bose-Einstein condensate.
Our scheme does not require single-particle resolved detection and is within the reach of current experiment techniques.
arXiv Detail & Related papers (2021-08-30T11:28:16Z) - Enhanced nonlinear quantum metrology with weakly coupled solitons and
particle losses [58.720142291102135]
We offer an interferometric procedure for phase parameters estimation at the Heisenberg (up to 1/N) and super-Heisenberg scaling levels.
The heart of our setup is the novel soliton Josephson Junction (SJJ) system providing the formation of the quantum probe.
We illustrate that such states are close to the optimal ones even with moderate losses.
arXiv Detail & Related papers (2021-08-07T09:29:23Z) - Experimental Adiabatic Quantum Metrology with the Heisenberg scaling [21.42706958416718]
We propose an adiabatic scheme on a perturbed Ising spin model with the first order quantum phase transition.
We experimentally implement the adiabatic scheme on the nuclear magnetic resonance and show that the achieved precision attains the Heisenberg scaling.
arXiv Detail & Related papers (2021-02-14T03:08:54Z) - Bose-Einstein condensate soliton qubit states for metrological
applications [58.720142291102135]
We propose novel quantum metrology applications with two soliton qubit states.
Phase space analysis, in terms of population imbalance - phase difference variables, is also performed to demonstrate macroscopic quantum self-trapping regimes.
arXiv Detail & Related papers (2020-11-26T09:05:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.