論文の概要: Fast and Robust Non-Rigid Registration Using Accelerated
Majorization-Minimization
- arxiv url: http://arxiv.org/abs/2206.03410v1
- Date: Tue, 7 Jun 2022 16:00:33 GMT
- ステータス: 処理完了
- システム内更新日: 2022-06-08 16:05:19.278573
- Title: Fast and Robust Non-Rigid Registration Using Accelerated
Majorization-Minimization
- Title(参考訳): 最大化最小化による高速かつロバストな非リギッドレジストレーション
- Authors: Yuxin Yao and Bailin Deng and Weiwei Xu and Juyong Zhang
- Abstract要約: 非剛性登録は、ターゲット形状と整合する非剛性な方法でソース形状を変形させるが、コンピュータビジョンにおける古典的な問題である。
既存のメソッドは通常$ell_p$型ロバストノルムを使用してアライメントエラーを測定し、変形の滑らかさを規則化する。
本稿では、アライメントと正規化のためのグローバルなスムーズなロバストノルムに基づく、ロバストな非剛体登録のための定式化を提案する。
- 参考スコア(独自算出の注目度): 35.66014845211251
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Non-rigid registration, which deforms a source shape in a non-rigid way to
align with a target shape, is a classical problem in computer vision. Such
problems can be challenging because of imperfect data (noise, outliers and
partial overlap) and high degrees of freedom. Existing methods typically adopt
the $\ell_{p}$ type robust norm to measure the alignment error and regularize
the smoothness of deformation, and use a proximal algorithm to solve the
resulting non-smooth optimization problem. However, the slow convergence of
such algorithms limits their wide applications. In this paper, we propose a
formulation for robust non-rigid registration based on a globally smooth robust
norm for alignment and regularization, which can effectively handle outliers
and partial overlaps. The problem is solved using the majorization-minimization
algorithm, which reduces each iteration to a convex quadratic problem with a
closed-form solution. We further apply Anderson acceleration to speed up the
convergence of the solver, enabling the solver to run efficiently on devices
with limited compute capability. Extensive experiments demonstrate the
effectiveness of our method for non-rigid alignment between two shapes with
outliers and partial overlaps, with quantitative evaluation showing that it
outperforms state-of-the-art methods in terms of registration accuracy and
computational speed. The source code is available at
https://github.com/yaoyx689/AMM_NRR.
- Abstract(参考訳): 非剛性登録は、ターゲット形状と整合する非剛性な方法でソース形状を変形させるが、コンピュータビジョンにおける古典的な問題である。
このような問題は、不完全なデータ(ノイズ、外れ値、部分的な重複)と高い自由度のために困難である。
既存の手法は一般に$\ell_{p}$型ロバストノルムを用いてアライメント誤差を測定し、変形の滑らかさを正則化し、近似アルゴリズムを用いて結果の非滑らかな最適化問題を解く。
しかし、そのようなアルゴリズムの緩やかな収束は幅広い応用を制限する。
本稿では,アライメントと正規化のための世界規模でスムーズなロバストなノルムに基づくロバストな非剛体登録のための定式化を提案する。
この問題は、各反復を閉形式解で凸二次問題に還元する偏極最小化アルゴリズムを用いて解決される。
さらにアンダーソン加速度を適用して解器の収束を高速化し、計算能力に制限のあるデバイス上で効率的に動作できるようにする。
広範囲にわたる実験により, 異常値と部分重なりを持つ2つの形状間の非剛性アライメント法の有効性が示され, 登録精度と計算速度の面では最先端手法よりも優れていることを示す定量的評価が得られた。
ソースコードはhttps://github.com/yaoyx689/amm_nrrで入手できる。
関連論文リスト
- SPARE: Symmetrized Point-to-Plane Distance for Robust Non-Rigid Registration [76.40993825836222]
本研究では,SPAREを提案する。SPAREは,非剛性登録のための対称化点-平面間距離を用いた新しい定式化である。
提案手法は, 厳密でない登録問題の精度を大幅に向上し, 比較的高い解効率を維持する。
論文 参考訳(メタデータ) (2024-05-30T15:55:04Z) - Fast Screening Rules for Optimal Design via Quadratic Lasso
Reformulation [0.135975510645475]
本研究は, 安全スクリーニングのルールを導出し, インテリジェンスサンプルを廃棄する。
新しいテストは、特に高次元のパラメータ空間に関わる問題に対して、より高速に計算できる。
本稿では,ラッソ法の正規化経路を計算するホモトピーアルゴリズムを,正方形 $ell_$-penalty に対して再パラメータ化する方法を示す。
論文 参考訳(メタデータ) (2023-10-13T08:10:46Z) - Constrained Optimization via Exact Augmented Lagrangian and Randomized
Iterative Sketching [55.28394191394675]
等式制約付き非線形非IBS最適化問題に対する適応的不正確なニュートン法を開発した。
ベンチマーク非線形問題,LVMのデータによる制約付きロジスティック回帰,PDE制約問題において,本手法の優れた性能を示す。
論文 参考訳(メタデータ) (2023-05-28T06:33:37Z) - Accelerated First-Order Optimization under Nonlinear Constraints [73.2273449996098]
我々は、制約付き最適化のための一階アルゴリズムと非滑らかなシステムの間で、新しい一階アルゴリズムのクラスを設計する。
これらのアルゴリズムの重要な性質は、制約がスパース変数の代わりに速度で表されることである。
論文 参考訳(メタデータ) (2023-02-01T08:50:48Z) - Slowly Varying Regression under Sparsity [5.22980614912553]
本稿では, 緩やかな過度回帰の枠組みを提示し, 回帰モデルが緩やかかつスパースな変動を示すようにした。
本稿では,バイナリ凸アルゴリズムとして再構成する手法を提案する。
結果として得られたモデルは、様々なデータセット間で競合する定式化よりも優れていることを示す。
論文 参考訳(メタデータ) (2021-02-22T04:51:44Z) - Hybrid Trilinear and Bilinear Programming for Aligning Partially
Overlapping Point Sets [85.71360365315128]
多くの応用において、部分重なり合う点集合が対応するRPMアルゴリズムに不変であるようなアルゴリズムが必要である。
まず、目的が立方体有界関数であることを示し、次に、三線型および双線型単相変換の凸エンベロープを用いて、その下界を導出する。
次に、変換変数上の分岐のみを効率よく実行するブランチ・アンド・バウンド(BnB)アルゴリズムを開発する。
論文 参考訳(メタデータ) (2021-01-19T04:24:23Z) - Single-Timescale Stochastic Nonconvex-Concave Optimization for Smooth
Nonlinear TD Learning [145.54544979467872]
本稿では,各ステップごとに1つのデータポイントしか必要としない2つの単一スケールシングルループアルゴリズムを提案する。
本研究の結果は, 同時一次および二重側収束の形で表される。
論文 参考訳(メタデータ) (2020-08-23T20:36:49Z) - Provably Convergent Working Set Algorithm for Non-Convex Regularized
Regression [0.0]
本稿では、収束保証付き非正則正規化器のためのワーキングセットアルゴリズムを提案する。
その結果,ブロックコーディネートや勾配ソルバの完全解法と比較して高い利得を示した。
論文 参考訳(メタデータ) (2020-06-24T07:40:31Z) - Quasi-Newton Solver for Robust Non-Rigid Registration [35.66014845211251]
データフィッティングと正規化のための大域的スムーズなロバスト推定器に基づくロバストな非剛性登録のための定式化を提案する。
本稿では,L-BFGS を用いた最小二乗問題の解法に,各繰り返しを減らし,最大化最小化アルゴリズムを適用した。
論文 参考訳(メタデータ) (2020-04-09T01:45:05Z) - Lagrangian Decomposition for Neural Network Verification [148.0448557991349]
ニューラルネットワーク検証の基本的なコンポーネントは、出力が取ることのできる値のバウンダリの計算である。
ラグランジアン分解に基づく新しい手法を提案する。
ランニングタイムのごく一部で、既成の解法に匹敵するバウンダリが得られることを示す。
論文 参考訳(メタデータ) (2020-02-24T17:55:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。