Likelihood-free Model Choice for Simulator-based Models with the
Jensen--Shannon Divergence
- URL: http://arxiv.org/abs/2206.04110v1
- Date: Wed, 8 Jun 2022 18:16:00 GMT
- Title: Likelihood-free Model Choice for Simulator-based Models with the
Jensen--Shannon Divergence
- Authors: Jukka Corander (1 2 3 4), Ulpu Remes (3) and Timo Koski (1 2 5) (1
Helsinki Institute of Information Technology (HIIT) 2 University of Helsinki
3 University of Oslo 4 Wellcome Sanger Institute 5 KTH Royal Institute of
Technology)
- Abstract summary: We derive a consistent model scoring criterion for the likelihood-free setting called JSD-Razor.
Relationships of JSD-Razor with established scoring criteria for the likelihood-based approach are analyzed.
- Score: 0.9884867402204268
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Choice of appropriate structure and parametric dimension of a model in the
light of data has a rich history in statistical research, where the first
seminal approaches were developed in 1970s, such as the Akaike's and Schwarz's
model scoring criteria that were inspired by information theory and embodied
the rationale called Occam's razor. After those pioneering works, model choice
was quickly established as its own field of research, gaining considerable
attention in both computer science and statistics. However, to date, there have
been limited attempts to derive scoring criteria for simulator-based models
lacking a likelihood expression. Bayes factors have been considered for such
models, but arguments have been put both for and against use of them and around
issues related to their consistency. Here we use the asymptotic properties of
Jensen--Shannon divergence (JSD) to derive a consistent model scoring criterion
for the likelihood-free setting called JSD-Razor. Relationships of JSD-Razor
with established scoring criteria for the likelihood-based approach are
analyzed and we demonstrate the favorable properties of our criterion using
both synthetic and real modeling examples.
Related papers
- On conditional diffusion models for PDE simulations [53.01911265639582]
We study score-based diffusion models for forecasting and assimilation of sparse observations.
We propose an autoregressive sampling approach that significantly improves performance in forecasting.
We also propose a new training strategy for conditional score-based models that achieves stable performance over a range of history lengths.
arXiv Detail & Related papers (2024-10-21T18:31:04Z) - Latent Semantic Consensus For Deterministic Geometric Model Fitting [109.44565542031384]
We propose an effective method called Latent Semantic Consensus (LSC)
LSC formulates the model fitting problem into two latent semantic spaces based on data points and model hypotheses.
LSC is able to provide consistent and reliable solutions within only a few milliseconds for general multi-structural model fitting.
arXiv Detail & Related papers (2024-03-11T05:35:38Z) - The Interpolating Information Criterion for Overparameterized Models [49.283527214211446]
We show that the Interpolating Information Criterion is a measure of model quality that naturally incorporates the choice of prior into the model selection.
Our new information criterion accounts for prior misspecification, geometric and spectral properties of the model, and is numerically consistent with known empirical and theoretical behavior.
arXiv Detail & Related papers (2023-07-15T12:09:54Z) - Comparing Foundation Models using Data Kernels [13.099029073152257]
We present a methodology for directly comparing the embedding space geometry of foundation models.
Our methodology is grounded in random graph theory and enables valid hypothesis testing of embedding similarity.
We show how our framework can induce a manifold of models equipped with a distance function that correlates strongly with several downstream metrics.
arXiv Detail & Related papers (2023-05-09T02:01:07Z) - Empirical Analysis of Model Selection for Heterogeneous Causal Effect Estimation [24.65301562548798]
We study the problem of model selection in causal inference, specifically for conditional average treatment effect (CATE) estimation.
We conduct an empirical analysis to benchmark the surrogate model selection metrics introduced in the literature, as well as the novel ones introduced in this work.
arXiv Detail & Related papers (2022-11-03T16:26:06Z) - A Statistical-Modelling Approach to Feedforward Neural Network Model Selection [0.8287206589886881]
Feedforward neural networks (FNNs) can be viewed as non-linear regression models.
A novel model selection method is proposed using the Bayesian information criterion (BIC) for FNNs.
The choice of BIC over out-of-sample performance leads to an increased probability of recovering the true model.
arXiv Detail & Related papers (2022-07-09T11:07:04Z) - Nonparametric likelihood-free inference with Jensen-Shannon divergence
for simulator-based models with categorical output [1.4298334143083322]
Likelihood-free inference for simulator-based statistical models has attracted a surge of interest, both in the machine learning and statistics communities.
Here we derive a set of theoretical results to enable estimation, hypothesis testing and construction of confidence intervals for model parameters using computation properties of the Jensen-Shannon- divergence.
Such approximation offers a rapid alternative to more-intensive approaches and can be attractive for diverse applications of simulator-based models.
arXiv Detail & Related papers (2022-05-22T18:00:13Z) - Anomaly Detection of Time Series with Smoothness-Inducing Sequential
Variational Auto-Encoder [59.69303945834122]
We present a Smoothness-Inducing Sequential Variational Auto-Encoder (SISVAE) model for robust estimation and anomaly detection of time series.
Our model parameterizes mean and variance for each time-stamp with flexible neural networks.
We show the effectiveness of our model on both synthetic datasets and public real-world benchmarks.
arXiv Detail & Related papers (2021-02-02T06:15:15Z) - Characterizing Fairness Over the Set of Good Models Under Selective
Labels [69.64662540443162]
We develop a framework for characterizing predictive fairness properties over the set of models that deliver similar overall performance.
We provide tractable algorithms to compute the range of attainable group-level predictive disparities.
We extend our framework to address the empirically relevant challenge of selectively labelled data.
arXiv Detail & Related papers (2021-01-02T02:11:37Z) - Goal-directed Generation of Discrete Structures with Conditional
Generative Models [85.51463588099556]
We introduce a novel approach to directly optimize a reinforcement learning objective, maximizing an expected reward.
We test our methodology on two tasks: generating molecules with user-defined properties and identifying short python expressions which evaluate to a given target value.
arXiv Detail & Related papers (2020-10-05T20:03:13Z) - Amortized Bayesian model comparison with evidential deep learning [0.12314765641075436]
We propose a novel method for performing Bayesian model comparison using specialized deep learning architectures.
Our method is purely simulation-based and circumvents the step of explicitly fitting all alternative models under consideration to each observed dataset.
We show that our method achieves excellent results in terms of accuracy, calibration, and efficiency across the examples considered in this work.
arXiv Detail & Related papers (2020-04-22T15:15:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.