Local Spatiotemporal Representation Learning for
Longitudinally-consistent Neuroimage Analysis
- URL: http://arxiv.org/abs/2206.04281v4
- Date: Tue, 12 Dec 2023 18:36:39 GMT
- Title: Local Spatiotemporal Representation Learning for
Longitudinally-consistent Neuroimage Analysis
- Authors: Mengwei Ren and Neel Dey and Martin A. Styner and Kelly Botteron and
Guido Gerig
- Abstract summary: This paper presents a local and multi-scaletemporal representation learning method for image-to-image architectures trained on longitudinal images.
During finetuning, it proposes a surprisingly simple self-supervised segmentation consistency regularization to exploit intrasubject correlation.
These improvements are demonstrated across both longitudinal neurodegenerative adult and developing infant brain MRI and yield both higher performance and longitudinal consistency.
- Score: 7.568469725821069
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent self-supervised advances in medical computer vision exploit global and
local anatomical self-similarity for pretraining prior to downstream tasks such
as segmentation. However, current methods assume i.i.d. image acquisition,
which is invalid in clinical study designs where follow-up longitudinal scans
track subject-specific temporal changes. Further, existing self-supervised
methods for medically-relevant image-to-image architectures exploit only
spatial or temporal self-similarity and only do so via a loss applied at a
single image-scale, with naive multi-scale spatiotemporal extensions collapsing
to degenerate solutions. To these ends, this paper makes two contributions: (1)
It presents a local and multi-scale spatiotemporal representation learning
method for image-to-image architectures trained on longitudinal images. It
exploits the spatiotemporal self-similarity of learned multi-scale
intra-subject features for pretraining and develops several feature-wise
regularizations that avoid collapsed identity representations; (2) During
finetuning, it proposes a surprisingly simple self-supervised segmentation
consistency regularization to exploit intra-subject correlation. Benchmarked in
the one-shot segmentation setting, the proposed framework outperforms both
well-tuned randomly-initialized baselines and current self-supervised
techniques designed for both i.i.d. and longitudinal datasets. These
improvements are demonstrated across both longitudinal neurodegenerative adult
MRI and developing infant brain MRI and yield both higher performance and
longitudinal consistency.
Related papers
- PMT: Progressive Mean Teacher via Exploring Temporal Consistency for Semi-Supervised Medical Image Segmentation [51.509573838103854]
We propose a semi-supervised learning framework, termed Progressive Mean Teachers (PMT), for medical image segmentation.
Our PMT generates high-fidelity pseudo labels by learning robust and diverse features in the training process.
Experimental results on two datasets with different modalities, i.e., CT and MRI, demonstrate that our method outperforms the state-of-the-art medical image segmentation approaches.
arXiv Detail & Related papers (2024-09-08T15:02:25Z) - SpaER: Learning Spatio-temporal Equivariant Representations for Fetal Brain Motion Tracking [6.417960463128722]
SpaER is a pioneering method for fetal motion tracking.
We develop an equivariant neural network that efficiently learns rigid motion sequences.
We validate our model using real fetal echo-planar images with simulated and real motions.
arXiv Detail & Related papers (2024-07-29T17:24:52Z) - Unlocking the Power of Spatial and Temporal Information in Medical Multimodal Pre-training [99.2891802841936]
We introduce the Med-ST framework for fine-grained spatial and temporal modeling.
For spatial modeling, Med-ST employs the Mixture of View Expert (MoVE) architecture to integrate different visual features from both frontal and lateral views.
For temporal modeling, we propose a novel cross-modal bidirectional cycle consistency objective by forward mapping classification (FMC) and reverse mapping regression (RMR)
arXiv Detail & Related papers (2024-05-30T03:15:09Z) - Real-time guidewire tracking and segmentation in intraoperative x-ray [52.51797358201872]
We propose a two-stage deep learning framework for real-time guidewire segmentation and tracking.
In the first stage, a Yolov5 detector is trained, using the original X-ray images as well as synthetic ones, to output the bounding boxes of possible target guidewires.
In the second stage, a novel and efficient network is proposed to segment the guidewire in each detected bounding box.
arXiv Detail & Related papers (2024-04-12T20:39:19Z) - A2V: A Semi-Supervised Domain Adaptation Framework for Brain Vessel Segmentation via Two-Phase Training Angiography-to-Venography Translation [4.452428104996953]
We present a semi-supervised domain adaptation framework for brain vessel segmentation from different image modalities.
By relying on annotated angiographies and a limited number of annotated venographies, our framework accomplishes image-to-image translation and semantic segmentation.
arXiv Detail & Related papers (2023-09-12T09:12:37Z) - Learning to Exploit Temporal Structure for Biomedical Vision-Language
Processing [53.89917396428747]
Self-supervised learning in vision-language processing exploits semantic alignment between imaging and text modalities.
We explicitly account for prior images and reports when available during both training and fine-tuning.
Our approach, named BioViL-T, uses a CNN-Transformer hybrid multi-image encoder trained jointly with a text model.
arXiv Detail & Related papers (2023-01-11T16:35:33Z) - Attentive Symmetric Autoencoder for Brain MRI Segmentation [56.02577247523737]
We propose a novel Attentive Symmetric Auto-encoder based on Vision Transformer (ViT) for 3D brain MRI segmentation tasks.
In the pre-training stage, the proposed auto-encoder pays more attention to reconstruct the informative patches according to the gradient metrics.
Experimental results show that our proposed attentive symmetric auto-encoder outperforms the state-of-the-art self-supervised learning methods and medical image segmentation models.
arXiv Detail & Related papers (2022-09-19T09:43:19Z) - Unsupervised Image Registration Towards Enhancing Performance and
Explainability in Cardiac And Brain Image Analysis [3.5718941645696485]
Inter- and intra-modality affine and non-rigid image registration is an essential medical image analysis process in clinical imaging.
We present an un-supervised deep learning registration methodology which can accurately model affine and non-rigid trans-formations.
Our methodology performs bi-directional cross-modality image synthesis to learn modality-invariant latent rep-resentations.
arXiv Detail & Related papers (2022-03-07T12:54:33Z) - Temporal Context Matters: Enhancing Single Image Prediction with Disease
Progression Representations [8.396615243014768]
We present a deep learning approach that leverages temporal progression information to improve clinical outcome predictions from single-timepoint images.
In our method, a self-attention based Temporal Convolutional Network (TCN) is used to learn a representation that is most reflective of the disease trajectory.
A Vision Transformer is pretrained in a self-supervised fashion to extract features from single-timepoint images.
arXiv Detail & Related papers (2022-03-02T22:11:07Z) - Few-shot Medical Image Segmentation using a Global Correlation Network
with Discriminative Embedding [60.89561661441736]
We propose a novel method for few-shot medical image segmentation.
We construct our few-shot image segmentor using a deep convolutional network trained episodically.
We enhance discriminability of deep embedding to encourage clustering of the feature domains of the same class.
arXiv Detail & Related papers (2020-12-10T04:01:07Z) - Contrastive Registration for Unsupervised Medical Image Segmentation [1.5125686694430571]
We present a novel contrastive registration architecture for unsupervised medical image segmentation.
Firstly, we propose an architecture to capture the image-to-image transformation pattern via registration for unsupervised medical image segmentation.
Secondly, we embed a contrastive learning mechanism into the registration architecture to enhance the discriminating capacity of the network in the feature-level.
arXiv Detail & Related papers (2020-11-17T19:29:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.